Difference between revisions of "User:Jholsenback"
Jump to navigation
Jump to search
Jholsenback (talk | contribs) |
Jholsenback (talk | contribs) m (completed document set up) |
||
| Line 1: | Line 1: | ||
| − | == | + | ==Introduction== |
| − | I'm playing around with | + | I'm using this area as a scratch pad. Currently I'm playing around with the LaTex markup files that are used in the POV-Ray™ documentation. |
==Reference== | ==Reference== | ||
| − | These | + | These appear in the reference section, and when they are wrapped in the <nowiki><math></math></nowiki> tags they ... |
===blobdens=== | ===blobdens=== | ||
<pre> | <pre> | ||
| Line 13: | Line 13: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>density = strength\cdot(1-(\frac {distance}{radius})^2)^2</math> | |
| − | |||
===curvmath=== | ===curvmath=== | ||
<pre> | <pre> | ||
| Line 53: | Line 52: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| + | render as: not done yet! | ||
===lattenua=== | ===lattenua=== | ||
<pre> | <pre> | ||
| Line 63: | Line 63: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>{attenuation} = \frac{2}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math> | |
| − | |||
===medatten=== | ===medatten=== | ||
<pre> | <pre> | ||
| Line 75: | Line 74: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>{attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math> | |
| − | |||
===prod=== | ===prod=== | ||
<pre> | <pre> | ||
| Line 85: | Line 83: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>prod_{i=b}^n a</math> | |
===sormath=== | ===sormath=== | ||
<pre> | <pre> | ||
| Line 94: | Line 92: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D</math> | |
===sqemath=== | ===sqemath=== | ||
<pre> | <pre> | ||
| Line 105: | Line 103: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0</math> | |
| − | |||
===sum=== | ===sum=== | ||
<pre> | <pre> | ||
| Line 115: | Line 112: | ||
\end{displaymath} | \end{displaymath} | ||
</pre> | </pre> | ||
| − | + | render as: <math>sum_{i=b}^n a</math> | |
| + | ==Tutorial== | ||
| + | These appear in the tutorial section, and when they are wrapped in the <nowiki><math></math></nowiki> tags they ... | ||
| + | ===polyfunc1=== | ||
| + | <pre> | ||
| + | % FILE: polyfunc1 | ||
| + | % --------- | ||
| + | \begin{displaymath} | ||
| + | \sqrt{x^2+y^2+z^2} = r | ||
| + | \end{displaymath} | ||
| + | </pre> | ||
| + | render as: <math>sqrt{x^2+y^2+z^2} = r</math> | ||
| + | ===polyfunc2=== | ||
| + | <pre> | ||
| + | % FILE: polyfunc2 | ||
| + | % --------- | ||
| + | \begin{displaymath} | ||
| + | x^2+y^2+z^2-r = 0 | ||
| + | \end{displaymath} | ||
| + | </pre> | ||
| + | render as: <math>x^2+y^2+z^2-r = 0</math> | ||
| + | ===polyfunc3=== | ||
| + | <pre> | ||
| + | % FILE: polyfunc3 | ||
| + | % --------- | ||
| + | \begin{displaymath} | ||
| + | z = \frac{2xy^2}{x^2+y^4} | ||
| + | \end{displaymath} | ||
| + | </pre> | ||
| + | render as: <math>z = \frac{2xy^2}{x^2+y^4}</math> | ||
| + | ===polyfunc4=== | ||
| + | <pre> | ||
| + | % FILE: polyfunc4 | ||
| + | % --------- | ||
| + | \begin{displaymath} | ||
| + | x^2z + y^4z - 2xy^2 = 0 | ||
| + | \end{displaymath} | ||
| + | </pre> | ||
| + | render as: <math>x^2z + y^4z - 2xy^2 = 0</math> | ||
| + | ===polyfunc5=== | ||
| + | <pre> | ||
| + | % FILE: polyfunc5 | ||
| + | % --------- | ||
| + | \begin{displaymath} | ||
| + | \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2 | ||
| + | \end{displaymath} | ||
| + | </pre> | ||
| + | render as: <math>sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2} = r_2</math> | ||
| + | ===polyfunc6=== | ||
| + | <pre> | ||
| + | % FILE: polyfunc6 | ||
| + | % --------- | ||
| + | \begin{displaymath} | ||
| + | x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+ | ||
| + | z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0 | ||
| + | \end{displaymath} | ||
| + | </pre> | ||
| + | render as: <math>x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0</math> | ||
Revision as of 15:36, 20 January 2009
Introduction
I'm using this area as a scratch pad. Currently I'm playing around with the LaTex markup files that are used in the POV-Ray™ documentation.
Reference
These appear in the reference section, and when they are wrapped in the <math></math> tags they ...
blobdens
% FILE: blobdens
% --------
\begin{displaymath}
\mathit{density} =
\mathit{strength}\cdot
\left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2
\end{displaymath}
render as:
curvmath
% FILE: curvmath
% --------
\begin{displaymath}
\begin{array}{l}
b = M \cdot x, \mathrm{with:}
\\ \\
b = \left[
\begin{array}{c}
r(j)^2 \\
r(j+1)^2 \\
2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\
\hline
h(j+1)-h(j-1) \\
2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\
\hline
h(j+2)-h(j)
\end{array}
\right]
\\ \\
M = \left[
\begin{array}{c c c c}
h(j)^3 & h(j)^2 & h(j) & 1 \\
h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\
3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\
3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0
\end{array}
\right]
\\ \\
x = \left[
\begin{array}{c}
A(j)\\ B(j)\\ C(j)\\ D(j)
\end{array}
\right]
\end{array}
\end{displaymath}
render as: not done yet!
lattenua
% FILE: lattenua
% --------
\begin{displaymath}
\mathit{attenuation} =
\frac{2}
{1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}
render as:
medatten
% FILE: medatten
% --------
\begin{displaymath}
\mathit{attenuation} =
\frac{1}
{1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}
render as:
prod
% FILE: prod
% ----
\begin{displaymath}
\prod_{i=b}^n a
\end{displaymath}
render as:
sormath
% sormath
% -------
\begin{displaymath}
r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D
\end{displaymath}
render as:
sqemath
% FILE: sqemath
% -------
\begin{displaymath}
f(x,y,z) =
\left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)}
\right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0
\end{displaymath}
render as:
sum
% FILE: sum
% ---
\begin{displaymath}
\sum_{i=b}^n a
\end{displaymath}
render as:
Tutorial
These appear in the tutorial section, and when they are wrapped in the <math></math> tags they ...
polyfunc1
% FILE: polyfunc1
% ---------
\begin{displaymath}
\sqrt{x^2+y^2+z^2} = r
\end{displaymath}
render as:
polyfunc2
% FILE: polyfunc2
% ---------
\begin{displaymath}
x^2+y^2+z^2-r = 0
\end{displaymath}
render as:
polyfunc3
% FILE: polyfunc3
% ---------
\begin{displaymath}
z = \frac{2xy^2}{x^2+y^4}
\end{displaymath}
render as:
polyfunc4
% FILE: polyfunc4
% ---------
\begin{displaymath}
x^2z + y^4z - 2xy^2 = 0
\end{displaymath}
render as:
polyfunc5
% FILE: polyfunc5
% ---------
\begin{displaymath}
\sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
\end{displaymath}
render as:
polyfunc6
% FILE: polyfunc6
% ---------
\begin{displaymath}
x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
\end{displaymath}
render as: