Difference between revisions of "User:Jholsenback"
Jump to navigation
Jump to search
Jholsenback (talk | contribs) m (completed document set up) |
Jholsenback (talk | contribs) m (Protected "User:Jholsenback" [edit=autoconfirmed:move=autoconfirmed]) |
(No difference)
|
Revision as of 12:51, 22 January 2009
Introduction
I'm using this area as a scratch pad. Currently I'm playing around with the LaTex markup files that are used in the POV-Ray™ documentation.
Reference
These appear in the reference section, and when they are wrapped in the <math></math> tags they ...
blobdens
% FILE: blobdens % -------- \begin{displaymath} \mathit{density} = \mathit{strength}\cdot \left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2 \end{displaymath}
render as:
curvmath
% FILE: curvmath % -------- \begin{displaymath} \begin{array}{l} b = M \cdot x, \mathrm{with:} \\ \\ b = \left[ \begin{array}{c} r(j)^2 \\ r(j+1)^2 \\ 2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\ \hline h(j+1)-h(j-1) \\ 2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\ \hline h(j+2)-h(j) \end{array} \right] \\ \\ M = \left[ \begin{array}{c c c c} h(j)^3 & h(j)^2 & h(j) & 1 \\ h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\ 3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\ 3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0 \end{array} \right] \\ \\ x = \left[ \begin{array}{c} A(j)\\ B(j)\\ C(j)\\ D(j) \end{array} \right] \end{array} \end{displaymath}
render as: not done yet!
lattenua
% FILE: lattenua % -------- \begin{displaymath} \mathit{attenuation} = \frac{2} {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}} \end{displaymath}
render as:
medatten
% FILE: medatten % -------- \begin{displaymath} \mathit{attenuation} = \frac{1} {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}} \end{displaymath}
render as:
prod
% FILE: prod % ---- \begin{displaymath} \prod_{i=b}^n a \end{displaymath}
render as:
sormath
% sormath % ------- \begin{displaymath} r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D \end{displaymath}
render as:
sqemath
% FILE: sqemath % ------- \begin{displaymath} f(x,y,z) = \left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)} \right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0 \end{displaymath}
render as:
sum
% FILE: sum % --- \begin{displaymath} \sum_{i=b}^n a \end{displaymath}
render as:
Tutorial
These appear in the tutorial section, and when they are wrapped in the <math></math> tags they ...
polyfunc1
% FILE: polyfunc1 % --------- \begin{displaymath} \sqrt{x^2+y^2+z^2} = r \end{displaymath}
render as:
polyfunc2
% FILE: polyfunc2 % --------- \begin{displaymath} x^2+y^2+z^2-r = 0 \end{displaymath}
render as:
polyfunc3
% FILE: polyfunc3 % --------- \begin{displaymath} z = \frac{2xy^2}{x^2+y^4} \end{displaymath}
render as:
polyfunc4
% FILE: polyfunc4 % --------- \begin{displaymath} x^2z + y^4z - 2xy^2 = 0 \end{displaymath}
render as:
polyfunc5
% FILE: polyfunc5 % --------- \begin{displaymath} \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2 \end{displaymath}
render as:
polyfunc6
% FILE: polyfunc6 % --------- \begin{displaymath} x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+ z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0 \end{displaymath}
render as: