Difference between revisions of "User:Jholsenback"
Jump to navigation
Jump to search
Jholsenback (talk | contribs) m (reorganized) |
Jholsenback (talk | contribs) m (cleanup) |
||
Line 14: | Line 14: | ||
</pre> | </pre> | ||
render as: <math>density = strength\cdot(1-(\frac {distance}{radius})^2)^2</math> | render as: <math>density = strength\cdot(1-(\frac {distance}{radius})^2)^2</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: curvmath | % FILE: curvmath | ||
Line 53: | Line 52: | ||
</pre> | </pre> | ||
render as: not done yet! | render as: not done yet! | ||
− | |||
<pre> | <pre> | ||
% FILE: lattenua | % FILE: lattenua | ||
Line 64: | Line 62: | ||
</pre> | </pre> | ||
render as: <math>{attenuation} = \frac{2}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math> | render as: <math>{attenuation} = \frac{2}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: medatten | % FILE: medatten | ||
Line 75: | Line 72: | ||
</pre> | </pre> | ||
render as: <math>{attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math> | render as: <math>{attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: prod | % FILE: prod | ||
Line 84: | Line 80: | ||
</pre> | </pre> | ||
render as: <math>prod_{i=b}^n a</math> | render as: <math>prod_{i=b}^n a</math> | ||
− | |||
<pre> | <pre> | ||
% sormath | % sormath | ||
Line 93: | Line 88: | ||
</pre> | </pre> | ||
render as: <math>r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D</math> | render as: <math>r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: sqemath | % FILE: sqemath | ||
Line 104: | Line 98: | ||
</pre> | </pre> | ||
render as: <math>f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0</math> | render as: <math>f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: sum | % FILE: sum | ||
Line 115: | Line 108: | ||
These appear in the tutorial section, and when they are wrapped in the <nowiki><math></math></nowiki> tags they ... | These appear in the tutorial section, and when they are wrapped in the <nowiki><math></math></nowiki> tags they ... | ||
− | |||
<pre> | <pre> | ||
% FILE: polyfunc1 | % FILE: polyfunc1 | ||
Line 124: | Line 116: | ||
</pre> | </pre> | ||
render as: <math>sqrt{x^2+y^2+z^2} = r</math> | render as: <math>sqrt{x^2+y^2+z^2} = r</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: polyfunc2 | % FILE: polyfunc2 | ||
Line 133: | Line 124: | ||
</pre> | </pre> | ||
render as: <math>x^2+y^2+z^2-r = 0</math> | render as: <math>x^2+y^2+z^2-r = 0</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: polyfunc3 | % FILE: polyfunc3 | ||
Line 142: | Line 132: | ||
</pre> | </pre> | ||
render as: <math>z = \frac{2xy^2}{x^2+y^4}</math> | render as: <math>z = \frac{2xy^2}{x^2+y^4}</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: polyfunc4 | % FILE: polyfunc4 | ||
Line 151: | Line 140: | ||
</pre> | </pre> | ||
render as: <math>x^2z + y^4z - 2xy^2 = 0</math> | render as: <math>x^2z + y^4z - 2xy^2 = 0</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: polyfunc5 | % FILE: polyfunc5 | ||
Line 160: | Line 148: | ||
</pre> | </pre> | ||
render as: <math>sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2} = r_2</math> | render as: <math>sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2} = r_2</math> | ||
− | |||
<pre> | <pre> | ||
% FILE: polyfunc6 | % FILE: polyfunc6 |
Revision as of 14:34, 24 January 2009
Random Scratchings
I'm currently working on migrating the current documentation set to this Wiki. There isn't any content yet, so I've just planted at flag for now.
LaTex
These appear in the reference section, and when they are wrapped in the <math></math> tags they ...
% FILE: blobdens % -------- \begin{displaymath} \mathit{density} = \mathit{strength}\cdot \left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2 \end{displaymath}
render as:
% FILE: curvmath % -------- \begin{displaymath} \begin{array}{l} b = M \cdot x, \mathrm{with:} \\ \\ b = \left[ \begin{array}{c} r(j)^2 \\ r(j+1)^2 \\ 2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\ \hline h(j+1)-h(j-1) \\ 2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\ \hline h(j+2)-h(j) \end{array} \right] \\ \\ M = \left[ \begin{array}{c c c c} h(j)^3 & h(j)^2 & h(j) & 1 \\ h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\ 3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\ 3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0 \end{array} \right] \\ \\ x = \left[ \begin{array}{c} A(j)\\ B(j)\\ C(j)\\ D(j) \end{array} \right] \end{array} \end{displaymath}
render as: not done yet!
% FILE: lattenua % -------- \begin{displaymath} \mathit{attenuation} = \frac{2} {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}} \end{displaymath}
render as:
% FILE: medatten % -------- \begin{displaymath} \mathit{attenuation} = \frac{1} {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}} \end{displaymath}
render as:
% FILE: prod % ---- \begin{displaymath} \prod_{i=b}^n a \end{displaymath}
render as:
% sormath % ------- \begin{displaymath} r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D \end{displaymath}
render as:
% FILE: sqemath % ------- \begin{displaymath} f(x,y,z) = \left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)} \right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0 \end{displaymath}
render as:
% FILE: sum % --- \begin{displaymath} \sum_{i=b}^n a \end{displaymath}
render as:
These appear in the tutorial section, and when they are wrapped in the <math></math> tags they ...
% FILE: polyfunc1 % --------- \begin{displaymath} \sqrt{x^2+y^2+z^2} = r \end{displaymath}
render as:
% FILE: polyfunc2 % --------- \begin{displaymath} x^2+y^2+z^2-r = 0 \end{displaymath}
render as:
% FILE: polyfunc3 % --------- \begin{displaymath} z = \frac{2xy^2}{x^2+y^4} \end{displaymath}
render as:
% FILE: polyfunc4 % --------- \begin{displaymath} x^2z + y^4z - 2xy^2 = 0 \end{displaymath}
render as:
% FILE: polyfunc5 % --------- \begin{displaymath} \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2 \end{displaymath}
render as:
% FILE: polyfunc6 % --------- \begin{displaymath} x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+ z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0 \end{displaymath}
render as: