Difference between revisions of "Documentation:Tutorial Section 3.4"
Jholsenback (talk | contribs) m (1 revision(s)) |
Jholsenback (talk | contribs) m (Protected "Documentation:Tutorial Section 3.4" [edit=sysop:move=sysop]) |
(No difference)
|
Revision as of 18:13, 10 March 2009
This document is protected, so submissions, corrections and discussions should be held on this documents talk page. |
Using Surface Highlights
In the glass example above, we noticed that there were bright little
hotspots on the surface. This gave the sphere a hard, shiny appearance.
POV-Ray gives us two ways to specify surface specular highlights. The first
is called Phong highlighting. Usually, Phong highlights are
described using two keywords: phong
and
phong_size
. The float that follows
phong
determines the brightness of the highlight while the float
following phong_size
determines its size. Let's try this.
sphere { <0,0,0>, 1 pigment { Gray50 } finish { ambient .2 diffuse .6 phong .75 phong_size 25 } }
Rendering this we see a fairly broad, soft highlight that gives the sphere
a kind of plastic appearance. Now let's change phong_size
to 150. This makes a much smaller highlight which gives the sphere the
appearance of being much harder and shinier.
There is another kind of highlight that is calculated by a different means
called specular highlighting. It is specified using the keyword
specular
and operates in conjunction with another keyword
called roughness
. These two keywords work together in much the
same way as phong
and phong_size
to create
highlights that alter the apparent shininess of the surface. Let's try
using specular in our sphere.
sphere { <0,0,0>, 1 pigment { Gray50 } finish { ambient .2 diffuse .6 specular .75 roughness .1 } }
Looking at the result we see a broad, soft highlight similar to what we
had when we used phong_size
of 25. Change roughness
to .001 and render again. Now we see a small, tight highlight similar to what
we had when we used phong_size
of 150. Generally speaking, specular
is slightly more accurate and therefore slightly more realistic than phong but
you should try both methods when designing a texture. There are even times when
both phong and specular may be used on a finish.
Using Reflection, Metallic and Metallic
There is another surface parameter that goes hand in hand with highlights,
reflection
. Surfaces that are very shiny usually have a degree
of reflection to them. Let's take a look at an example.
sphere { <0,0,0>, 1 pigment { Gray50 } finish { ambient .2 diffuse .6 specular .75 roughness .001 reflection { .5 } } }
We see that our sphere now reflects the green and white checkered plane
and the black background but the gray color of the sphere seems out of place.
This is another time when a lower diffuse value is needed. Generally, the
higher reflection
is the lower diffuse
should be.
We lower the diffuse value to 0.3 and the ambient value to 0.1 and render
again. That is much better. Let's make our sphere as shiny as a polished
gold ball bearing.
sphere { <0,0,0>, 1 pigment { BrightGold } finish { ambient .1 diffuse .1 specular 1 roughness .001 reflection { .75 } } }
That is close but there is something wrong, the colour of the reflection and the highlight. To
make the surface appear more like metal the keyword metallic
is used. We add it now to see the difference.
sphere { <0,0,0>, 1 pigment { BrightGold } finish { ambient .1 diffuse .1 specular 1 roughness .001 reflection { .75 metallic } } }
The reflection has now more of the gold color than the color of its environment. Last detail, the highlight. We add another metallic statement, now to the finish and not inside the reflection block.
sphere { <0,0,0>, 1 pigment { BrightGold } finish { ambient .1 diffuse .1 specular 1 roughness .001 metallic reflection { .75 metallic } } }
We see that the highlight has taken on the color of the surface rather than the light source. This gives the surface a more metallic appearance.
Using Iridescence
Iridescence is what we see on the surface of an oil slick when
the sun shines on it. The rainbow effect is created by something called
thin-film interference (read section "Iridescence" for
details). For now let's just try using it. Iridescence is specified by
the irid
statement and three values: amount,
thickness
and turbulence
. The amount is the contribution
to the overall surface color. Usually 0.1 to 0.5 is sufficient here.
The thickness affects the "busyness" of the effect. Keep this between
0.25 and 1 for best results. The turbulence is a little different from
pigment or normal turbulence. We cannot set octaves
, lambda
or omega
but we can specify an amount which will affect the thickness
in a slightly different way from the thickness value. Values between 0.25 and 1
work best here too. Finally, iridescence will respond to the surface normal since
it depends on the angle of incidence of the light rays striking the surface.
With all of this in mind, let's add some iridescence to our glass sphere.
sphere { <0,0,0>, 1 pigment { White filter 1 } finish { ambient .1 diffuse .1 reflection .2 specular 1 roughness .001 irid { 0.35 thickness .5 turbulence .5 } } interior{ ior 1.5 fade_distance 5 fade_power 1 caustics 1 } }
We try to vary the values for amount, thickness and turbulence to see what
changes they make. We also try to add a normal
block to see what
happens.
Working With Pigment Maps
Let's look at the pigment map. We must not confuse this with a color map, as color maps can only take individual colors as entries in the map, while pigment maps can use entire other pigment patterns. To get a feel for these, let's begin by setting up a basic plane with a simple pigment map. Now, in the following example, we are going to declare each of the pigments we are going to use before we actually use them. This is not strictly necessary (we could put an entire pigment description in each entry of the map) but it just makes the whole thing more readable.
// simple Black on White checkerboard... it's a classic #declare Pigment1 = pigment { checker color Black color White scale .1 } // kind of a "psychedelic rings" effect #declare Pigment2 = pigment { wood color_map { [ 0.0 Red ] [ 0.3 Yellow ] [ 0.6 Green ] [ 1.0 Blue ] } } plane { -z, 0 pigment { gradient x pigment_map { [ 0.0 Pigment1 ] [ 0.5 Pigment2 ] [ 1.0 Pigment1 ] } } }
Okay, what we have done here is very simple, and probably quite recognizable if we have been working with color maps all along anyway. All we have done is substituted a pigment map where a color map would normally go, and as the entries in our map, we have referenced our declared pigments. When we render this example, we see a pattern which fades back and forth between the classic checkerboard, and those colorful rings. Because we fade from Pigment1 to Pigment2 and then back again, we see a clear blending of the two patterns at the transition points. We could just as easily get a sudden transition by amending the map to read.
pigment_map { [ 0.0 Pigment1 ] [ 0.5 Pigment1 ] [ 0.5 Pigment2 ] [ 1.0 Pigment2 ] }
Blending individual pigment patterns is just the beginning.
Working With Normal Maps
For our next example, we replace the plane in the scene with this one.
plane { -z, 0 pigment { White } normal { gradient x normal_map { [ 0.0 bumps 1 scale .1] [ 1.0 ripples 1 scale .1] } } }
First of all, we have chosen a solid white color to show off all bumping to best effect. Secondly, we notice that our map blends smoothly from all bumps at 0.0 to all ripples at 1.0, but because this is a default gradient, it falls off abruptly back to bumps at the beginning of the next cycle. We Render this and see just enough sharp transitions to clearly see where one normal gives over to another, yet also an example of how two normal patterns look while they are smoothly blending into one another.
The syntax is the same as we would expect. We just changed the type of map, moved it into the normal block and supplied appropriate bump types. It is important to remember that as of POV-Ray 3, all patterns that work with pigments work as normals as well (and vice versa, except for facets) so we could just as easily have blended from wood to granite, or any other pattern we like. We experiment a bit and get a feel for what the different patterns look like.
After seeing how interesting the various normals look blended, we might like
to see them completely blended all the way through rather than this business
of fading from one to the next. Well, that is possible too, but we would be
getting ahead of ourselves. That is called the average
function, and we will return to it a little bit further down the page.
Working With Texture Maps
We know how to blend colors, pigment patterns, and normals, and we are probably thinking what about finishes? What about whole textures? Both of these can be kind of covered under one topic. While there is no finish map per se, there are texture maps, and we can easily adapt these to serve as finish maps, simply by putting the same pigment and/or normal in each of the texture entries of the map. Here is an example. We eliminate the declared pigments we used before and the previous plane, and add the following.
#declare Texture1 = texture { pigment { Grey } finish { reflection 1 } } #declare Texture2 = texture { pigment { Grey } finish { reflection 0 } } cylinder { <-2, 5, -2>, <-2, -5, -2>, 1 pigment { Blue } } plane { -z, 0 rotate y * 30 texture { gradient y texture_map { [ 0.0 Texture1 ] [ 0.4 Texture1 ] [ 0.6 Texture2 ] [ 1.0 Texture2 ] } scale 2 } }
Now, what have we done here? The background plane alternates vertically between two textures, identical except for their finishes. When we render this, the cylinder has a reflection part of the way down the plane, and then stops reflecting, then begins and then stops again, in a gradient pattern down the surface of the plane. With a little adaptation, this could be used with any pattern, and in any number of creative ways, whether we just wanted to give various parts of an object different finishes, as we are doing here, or whole different textures altogether.
One might ask: if there is a texture map, why do we need pigment and normal maps? Fair question. The answer: speed of calculation. If we use a texture map, for every in-between point, POV-Ray must make multiple calculations for each texture element, and then run a weighted average to produce the correct value for that point. Using just a pigment map (or just a normal map) decreases the overall number of calculations, and our texture renders a bit faster in the bargain. As a rule of thumb: we use pigment or normal maps where we can and only fall back on texture maps if we need the extra flexibility.
Working With List Textures
If we have followed the corresponding tutorials on simple pigments, we know that there are three patterns called color list patterns, because rather than using a color map, these simple but useful patterns take a list of colors immediately following the pattern keyword. We are talking about checker, hexagon, the brick pattern and the object pattern.
Naturally they also work with whole pigments, normals, and entire textures, just as the other patterns do above. The only difference is that we list entries in the pattern (as we would do with individual colors) rather than using a map of entries. Here is an example. We strike the plane and any declared pigments we had left over in our last example, and add the following to our basic file.
#declare Pigment1 = pigment { hexagon color Yellow color Green color Grey scale .1 } #declare Pigment2 = pigment { checker color Red color Blue scale .1 } #declare Pigment3 = pigment { brick color White color Black rotate -90*x scale .1 } box { -5, 5 pigment { hexagon pigment {Pigment1} pigment {Pigment2} pigment {Pigment3} rotate 90*x } }
We begin by declaring an example of each of the color list patterns as individual pigments. Then we use the hexagon pattern as a pigment list pattern, simply feeding it a list of pigments rather than colors as we did above. There are two rotate statements throughout this example, because bricks are aligned along the z-direction, while hexagons align along the y-direction, and we wanted everything to face toward the camera we originally declared out in the -z-direction so we can really see the patterns within patterns effect here.
Of course color list patterns used to be only for pigments, but as of POV-Ray 3, everything that worked for pigments can now also be adapted for normals or entire textures. A couple of quick examples might look like
normal { brick normal { granite .1 } normal { bumps 1 scale .1 } }
or...
texture { checker texture { Gold_Metal } texture { Silver_Metal } }
What About Tiles?
In earlier versions of POV-Ray, there was a texture pattern called
tiles
. By simply using a checker texture pattern (as we just saw
above), we can achieve the same thing as tiles used to do, so it is now
obsolete. It is still supported by POV-Ray 3 for backwards compatibility with
old scene files, but now is a good time to get in the habit of using a
checker pattern instead.
Average Function
Now things get interesting. Above, we began to see how pigments and
normals can fade from one to the other when we used them in maps. But how
about if we want a smooth blend of patterns all the way through? That is
where a new feature called average
can come in very handy.
Average works with pigment, normal, and texture maps, although the syntax is
a little bit different, and when we are not expecting it, the change can be
confusing. Here is a simple example. We use our standard includes, camera and
light source from above, and enter the following object.
plane { -z, 0 pigment { White } normal { average normal_map { [1, gradient x ] [1, gradient y ] } } }
What we have done here is pretty self explanatory as soon as we render it. We have combined a vertical with a horizontal gradient bump pattern, creating crisscrossing gradients. Actually, the crisscrossing effect is a smooth blend of gradient x with gradient y all the way across our plane. Now, what about that syntax difference?
We see how our normal map has changed from earlier examples. The floating point value to the left-hand side of each map entry has a different meaning now. It gives the weight factor per entry in the map. Try some different values for the 'gradient x' entry and see how the normal changes.
The weight factor can be omitted, the result then will be the same as if each entry had a weight factor of 1.
Working With Layered Textures
With the multitudinous colors, patterns, and options for creating complex textures in POV-Ray, we can easily become deeply engrossed in mixing and tweaking just the right textures to apply to our latest creations. But as we go, sooner or later there is going to come that special texture. That texture that is sort of like wood, only varnished, and with a kind of spotty yellow streaking, and some vertical gray flecks, that looks like someone started painting over it all, and then stopped, leaving part of the wood visible through the paint.
Only... now what? How do we get all that into one texture? No pattern can do that many things. Before we panic and say image map there is at least one more option: layered textures.
With layered textures, we only need to specify a series of textures, one after the other, all associated with the same object. Each texture we list will be applied one on top of the other, from bottom to top in the order they appear.
It is very important to note that we must have some degree of transparency (filter or transmit) in the pigments of our upper textures, or the ones below will get lost underneath. We will not receive a warning or an error - technically it is legal to do this: it just does not make sense. It is like spending hours sketching an elaborate image on a bare wall, then slapping a solid white coat of latex paint over it.
Let's design a very simple object with a layered texture, and look at
how it works. We create a file called LAYTEX.POV
and add the
following lines.
#include "colors.inc" #include "textures.inc" camera { location <0, 5, -30> look_at <0, 0, 0> } light_source { <-20, 30, -50> color White } plane { y, 0 pigment { checker color Green color Yellow } } background { rgb <.7, .7, 1> } box { <-10, 0, -10>, <10, 10, 10> texture { Silver_Metal // a metal object ... normal { // ... which has suffered a beating dents 2 scale 1.5 } } // (end of base texture) texture { // ... has some flecks of rust ... pigment { granite color_map { [0.0 rgb <.2, 0, 0> ] [0.2 color Brown ] [0.2 rgbt <1, 1, 1, 1> ] [1.0 rgbt <1, 1, 1, 1> ] } frequency 16 } } // (end rust fleck texture) texture { // ... and some sooty black marks pigment { bozo color_map { [0.0 color Black ] [0.2 color rgbt <0, 0, 0, .5> ] [0.4 color rgbt <.5, .5, .5, .5> ] [0.5 color rgbt <1, 1, 1, 1> ] [1.0 color rgbt <1, 1, 1, 1> ] } scale 3 } } // (end of sooty mark texture) } // (end of box declaration)
Whew. This gets complicated, so to make it easier to read, we have included comments showing what we are doing and where various parts of the declaration end (so we do not get lost in all those closing brackets!). To begin, we created a simple box over the classic checkerboard floor, and give the background sky a pale blue color. Now for the fun part...
To begin with we made the box use the Silver_Metal
texture as
declared in textures.inc (for bonus points, look up textures.inc
and see how this standard texture was originally created sometime). To give
it the start of its abused state, we added the dents normal pattern, which
creates the illusion of some denting in the surface as if our mysterious
metal box had been knocked around quite a bit.
The flecks of rust are nothing but a fine grain granite pattern fading from dark red to brown which then abruptly drops to fully transparent for the majority of the color map. True, we could probably come up with a more realistic pattern of rust using pigment maps to cluster rusty spots, but pigment maps are a subject for another tutorial section, so let's skip that just now.
Lastly, we have added a third texture to the pot. The randomly shifting
bozo
texture gradually fades from blackened centers to
semi-transparent medium gray, and then ultimately to fully transparent for
the latter half of its color map. This gives us a look of sooty burn marks
further marring the surface of the metal box. The final result leaves our
mysterious metal box looking truly abused, using multiple texture patterns,
one on top of the other, to produce an effect that no single pattern could
generate!
Declaring Layered Textures
In the event we want to reuse a layered texture on several objects in our scene, it is perfectly legal to declare a layered texture. We will not repeat the whole texture from above, but the general format would be something like this:
#declare Abused_Metal = texture { /* insert your base texture here... */ } texture { /* and your rust flecks here... */ } texture { /* and of course, your sooty burn marks here */ }
POV-Ray has no problem spotting where the declaration ends, because the textures follow one after the other with no objects or directives in between. The layered texture to be declared will be assumed to continue until it finds something other than another texture, so any number of layers can be added in to a declaration in this fashion.
One final word about layered textures: whatever layered texture we create, whether declared or not, we must not leave off the texture wrapper. In conventional single textures a common shorthand is to have just a pigment, or just a pigment and finish, or just a normal, or whatever, and leave them outside of a texture statement. This shorthand does not extend to layered textures. As far as POV-Ray is concerned we can layer entire textures, but not individual pieces of textures. For example
#declare Bad_Texture = texture { /* insert your base texture here... */ } pigment { Red filter .5 } normal { bumps 1 }
will not work. The pigment and the normal are just floating there without being part of any particular texture. Inside an object, with just a single texture, we can do this sort of thing, but with layered textures, we would just generate an error whether inside the object or in a declaration.
Another Layered Textures Example
To further explain how layered textures work another example is described in detail. A tablecloth is created to be used in a picnic scene. Since a simple red and white checkered cloth looks entirely too new, too flat, and too much like a tiled floor, layered textures are used to stain the cloth.
We are going to create a scene containing four boxes. The first box has that plain red and white texture we started with in our picnic scene, the second adds a layer meant to realistically fade the cloth, the third adds some wine stains, and the final box adds a few wrinkles (not another layer, but we must note when and where adding changes to the surface normal have an effect in layered textures).
We start by placing a camera, some lights, and the first box. At this stage,
the texture is plain tiling, not layered. See file
layered1.pov
.
#include "colors.inc" camera { location <0, 0, -6> look_at <0, 0, 0> } light_source { <-20, 30, -100> color White } light_source { <10, 30, -10> color White } light_source { <0, 30, 10> color White } #declare PLAIN_TEXTURE = // red/white check texture { pigment { checker color rgb<1.000, 0.000, 0.000> color rgb<1.000, 1.000, 1.000> scale <0.2500, 0.2500, 0.2500> } } // plain red/white check box box { <-1, -1, -1>, <1, 1, 1> texture { PLAIN_TEXTURE } translate <-1.5, 1.2, 0> }
We render this scene. It is not particularly interesting, is it? That is why we will use some layered textures to make it more interesting.
First, we add a layer of two different, partially transparent grays. We tile
them as we had tiled the red and white colors, but we add some turbulence to
make the fading more realistic. We add the following box to the previous scene
and re-render (see file layered2.pov
).
#declare FADED_TEXTURE = // red/white check texture texture { pigment { checker color rgb<0.920, 0.000, 0.000> color rgb<1.000, 1.000, 1.000> scale <0.2500, 0.2500, 0.2500> } } // greys to fade red/white texture { pigment { checker color rgbf<0.632, 0.612, 0.688, 0.698> color rgbf<0.420, 0.459, 0.520, 0.953> turbulence 0.500 scale <0.2500, 0.2500, 0.2500> } } // faded red/white check box box { <-1, -1, -1>, <1, 1, 1> texture { FADED_TEXTURE } translate <1.5, 1.2, 0> }
Even though it is a subtle difference, the red and white checks no longer look quite so new.
Since there is a bottle of wine in the picnic scene, we thought it might be a nice touch to add a stain or two. While this effect can almost be achieved by placing a flattened blob on the cloth, what we really end up with is a spill effect, not a stain. Thus it is time to add another layer.
Again, we add another box to the scene we already have scripted and
re-render (see file layered3.pov
).
#declare STAINED_TEXTURE = // red/white check texture { pigment { checker color rgb<0.920, 0.000, 0.000> color rgb<1.000, 1.000, 1.000> scale <0.2500, 0.2500, 0.2500> } } // greys to fade check texture { pigment { checker color rgbf<0.634, 0.612, 0.688, 0.698> color rgbf<0.421, 0.463, 0.518, 0.953> turbulence 0.500 scale <0.2500, 0.2500, 0.2500> } } // wine stain texture { pigment { spotted color_map { [ 0.000 color rgb<0.483, 0.165, 0.165> ] [ 0.329 color rgbf<1.000, 1.000, 1.000, 1.000> ] [ 0.734 color rgbf<1.000, 1.000, 1.000, 1.000> ] [ 1.000 color rgb<0.483, 0.165, 0.165> ] } turbulence 0.500 frequency 1.500 } } // stained box box { <-1, -1, -1>, <1, 1, 1> texture { STAINED_TEXTURE } translate <-1.5, -1.2, 0> }
Now there is a tablecloth texture with personality.
Another touch we want to add to the cloth are some wrinkles as if the cloth had been rumpled. This is not another texture layer, but when working with layered textures, we must keep in mind that changes to the surface normal must be included in the uppermost layer of the texture. Changes to lower layers have no effect on the final product (no matter how transparent the upper layers are).
We add this final box to the script and re-render (see file
layered4.pov
)
#declare WRINKLED_TEXTURE = // red and white check texture { pigment { checker color rgb<0.920, 0.000, 0.000> color rgb<1.000, 1.000, 1.000> scale <0.2500, 0.2500, 0.2500> } } // greys to "fade" checks texture { pigment { checker color rgbf<0.632, 0.612, 0.688, 0.698> color rgbf<0.420, 0.459, 0.520, 0.953> turbulence 0.500 scale <0.2500, 0.2500, 0.2500> } } // the wine stains texture { pigment { spotted color_map { [ 0.000 color rgb<0.483, 0.165, 0.165> ] [ 0.329 color rgbf<1.000, 1.000, 1.000, 1.000> ] [ 0.734 color rgbf<1.000, 1.000, 1.000, 1.000> ] [ 1.000 color rgb<0.483, 0.165, 0.165> ] } turbulence 0.500 frequency 1.500 } normal { wrinkles 5.0000 } } // wrinkled box box { <-1, -1, -1>, <1, 1, 1> texture { WRINKLED_TEXTURE } translate <1.5, -1.2, 0> }
Well, this may not be the tablecloth we want at any picnic we are attending, but if we compare the final box to the first, we see just how much depth, dimension, and personality is possible just by the use of creative texturing.
One final note: the comments concerning the surface normal do not hold true for finishes. If a lower layer contains a specular finish and an upper layer does not, any place where the upper layer is transparent, the specular will show through.
When All Else Fails: Material Maps
We have some pretty powerful texturing tools at our disposal, but what if we want a more free form arrangement of complex textures? Well, just as image maps do for pigments, and bump maps do for normals, whole textures can be mapped using a material map, should the need arise.
Just as with image maps and bump maps, we need a source image in bitmapped
format which will be called by POV-Ray to serve as the map of where the
individual textures will go, but this time, we need to specify what texture
will be associated with which palette index. To make such an image, we can
use a paint program which allows us to select colors by their palette index
number (the actual color is irrelevant, since it is only a map to tell
POV-Ray what texture will go at that location). Now, if we have the complete
package that comes with POV-Ray, we have in our include files an image called
povmap.gif
which is a bitmapped image that uses only the first
four palette indices to create a bordered square with the words
"Persistence of Vision" in it. This will do just fine as a sample
map for the following example. Using our same include files, the camera and
light source, we enter the following object.
plane { -z, 0 texture { material_map { gif "povmap.gif" interpolate 2 once texture { PinkAlabaster } // the inner border texture { pigment { DMFDarkOak } } // outer border texture { Gold_Metal } // lettering texture { Chrome_Metal } // the window panel } translate <-0.5, -0.5, 0> scale 5 } }
The position of the light source and the lack of foreground objects to be
reflected do not show these textures off to their best advantage. But at
least we can see how the process works. The textures have simply been placed
according to the location of pixels of a particular palette index. By using
the once
keyword (to keep it from tiling), and translating and
scaling our map to match the camera we have been using, we get to see the
whole thing laid out for us.
Of course, that is just with palette mapped image formats, such as GIF and certain flavors of PNG. Material maps can also use non-paletted formats, such as the TGA files that POV-Ray itself outputs. That leads to an interesting consequence: We can use POV-Ray to produce source maps for POV-Ray! Before we wrap up with some of the limitations of special textures, let's do one more thing with material maps, to show how POV-Ray can make its own source maps.
To begin with, if using a non-paletted image, POV-Ray looks at the 8 bit red component of the pixel's color (which will be a value from 0 to 255) to determine which texture from the list to use. So to create a source map, we need to control very precisely what the red value of a given pixel will be. We can do this by
- Using an rgb statement to choose our color such as rgb <N/255,0,0>, where "N" is the red value we want to assign that pigment, and then...
- Use no light sources and apply a finish of
finish { ambient 1 }
to all objects, to ensure that highlighting and shadowing will not interfere.
Confused? Alright, here is an example, which will generate a map very much
like povmap.gif
which we used earlier, except in TGA file
format. We notice that we have given the pigments blue and green components
too. POV-Ray will ignore that in our final map, so this is really for us
humans, whose unaided eyes cannot tell the difference between red variances
of 0 to 4/255ths. Without those blue and green variances, our map would look
to our eyes like a solid black screen. That may be a great way to send secret
messages using POV-Ray (plug it into a material map to decode) but it is no
use if we want to see what our source map looks like to make sure we have
what we expected to.
We create the following code, name it povmap.pov
, then render
it. This will create an output file called povmap.tga
(povmap.bmp
on Windows systems).
camera { orthographic up <0, 5, 0> right <5, 0, 0> location <0, 0, -25> look_at <0, 0, 0> } plane { -z, 0 pigment { rgb <1/255, 0, 0.5> } finish { ambient 1 } } box { <-2.3, -1.8, -0.2>, <2.3, 1.8, -0.2> pigment { rgb <0/255, 0, 1> } finish { ambient 1 } } box { <-1.95, -1.3, -0.4>, <1.95, 1.3, -0.3> pigment { rgb <2/255, 0.5, 0.5> } finish { ambient 1 } } text { ttf "crystal.ttf", "The vision", 0.1, 0 scale <0.7, 1, 1> translate <-1.8, 0.25, -0.5> pigment { rgb <3/255, 1, 1> } finish { ambient 1 } } text { ttf "crystal.ttf", "Persists!", 0.1, 0 scale <0.7, 1, 1> translate <-1.5, -1, -0.5> pigment { rgb <3/255, 1, 1> } finish { ambient 1 } }
All we have to do is modify our last material map example by changing the material map from GIF to TGA and modifying the filename. When we render using the new map, the result is extremely similar to the palette mapped GIF we used before, except that we did not have to use an external paint program to generate our source: POV-Ray did it all!
Using Ambient | Limitations Of Special Textures |
This document is protected, so submissions, corrections and discussions should be held on this documents talk page. |