Difference between revisions of "User:Jholsenback"
Jholsenback (talk | contribs) |
Jholsenback (talk | contribs) m (→Blob Density) |
||
| Line 14: | Line 14: | ||
</pre> | </pre> | ||
render as: <p><math>{\textit{density}} = {\textit{strength}}\cdot \left(1-\left(\frac {\min (\textit{distance}, \textit{radius})} {\textit{radius}} \right)^2\right)^2</math></p> | render as: <p><math>{\textit{density}} = {\textit{strength}}\cdot \left(1-\left(\frac {\min (\textit{distance}, \textit{radius})} {\textit{radius}} \right)^2\right)^2</math></p> | ||
| + | <p class="Note">'''Note:''' This formula has been corrected!</p> | ||
| + | |||
====Curve Math==== | ====Curve Math==== | ||
<pre> | <pre> | ||
Revision as of 14:56, 14 October 2009
Projects
I'm currently working on migrating the current documentation set to this Wiki.
Reference Section
These LaTex markup segments appear in the reference section. When they are wrapped in the <math></math> tags they ...
Blob Density
% FILE: blobdens
% --------
\begin{displaymath}
\mathit{density} =
\mathit{strength}\cdot
\left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\textit{density}} = {\textit{strength}}\cdot \left(1-\left(\frac {\min (\textit{distance}, \textit{radius})} {\textit{radius}} \right)^2\right)^2}
Note: This formula has been corrected!
Curve Math
% FILE: curvmath
% --------
\begin{displaymath}
\begin{array}{l}
b = M \cdot x, \mathrm{with:}
\\ \\
b = \left[
\begin{array}{c}
r(j)^2 \\
r(j+1)^2 \\
2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\
\hline
h(j+1)-h(j-1) \\
2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\
\hline
h(j+2)-h(j)
\end{array}
\right]
\\ \\
M = \left[
\begin{array}{c c c c}
h(j)^3 & h(j)^2 & h(j) & 1 \\
h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\
3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\
3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0
\end{array}
\right]
\\ \\
x = \left[
\begin{array}{c}
A(j)\\ B(j)\\ C(j)\\ D(j)
\end{array}
\right]
\end{array}
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{l} b = M \cdot x, \mathrm{with:} \\ \\ b = \left[ \begin{array}{c} r(j)^2 \\ r(j+1)^2 \\ 2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\ \hline h(j+1)-h(j-1) \\ 2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\ \hline h(j+2)-h(j) \end{array} \right] \\ \\ M = \left[ \begin{array}{c c c c} h(j)^3 & h(j)^2 & h(j) & 1 \\ h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\ 3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\ 3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0 \end{array} \right] \\ \\ x = \left[ \begin{array}{c} A(j)\\ B(j)\\ C(j)\\ D(j) \end{array} \right] \end{array} }
Light Fading
% FILE: lattenua
% --------
\begin{displaymath}
\mathit{attenuation} =
\frac{2}
{1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textit{attenuation} = \frac{2} {1+\left(\frac{\textit d}{\textit{fade\_distance}}\right)^\textit{fade\_power}} }
Attenuation
% FILE: medatten
% --------
\begin{displaymath}
\mathit{attenuation} =
\frac{1}
{1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textit {attenuation} = \frac{1}{1+\left(\frac \textit {d} \textit {fade\_distance}\right)^\textit {fade\_power}}}
Product
% FILE: prod
% ----
\begin{displaymath}
\prod_{i=b}^n a
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod^\textit {n}_{\textit i \textit = \textit b}\textit a}
Surface of Revolution
% sormath
% -------
\begin{displaymath}
r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D}
Superquadric Ellipsoid
% FILE: sqemath
% -------
\begin{displaymath}
f(x,y,z) =
\left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)}
\right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0}
Sum
% FILE: sum
% ---
\begin{displaymath}
\sum_{i=b}^n a
\end{displaymath}
render as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^{\textit n}_{\textit i \textit = \textit b}\textit a}
Tutorial Section
These LaTex segments appear in the tutorial section. When they are wrapped in the <math></math> tags they ...
Creating the polynomial function
% FILE: polyfunc1
% ---------
\begin{displaymath}
\sqrt{x^2+y^2+z^2} = r
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sqrt{x^2+y^2+z^2}} = r}
% FILE: polyfunc2
% ---------
\begin{displaymath}
x^2+y^2+z^2-r = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2+y^2+z^2-r = 0}
% FILE: polyfunc3
% ---------
\begin{displaymath}
z = \frac{2xy^2}{x^2+y^4}
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = \frac{2xy^2}{x^2+y^4}}
% FILE: polyfunc4
% ---------
\begin{displaymath}
x^2z + y^4z - 2xy^2 = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2z + y^4z - 2xy^2 = 0}
% FILE: polyfunc5
% ---------
\begin{displaymath}
\sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2}} = r_2}
% FILE: polyfunc6
% ---------
\begin{displaymath}
x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0}