Difference between revisions of "User:Jholsenback"

From POV-Wiki
Jump to navigation Jump to search
m (completed document set up)
Line 1: Line 1:
==Intro==
+
==Introduction==
I'm playing around with these LaTex markup files that are used in the POV-Ray documentation.
+
I'm using this area as a scratch pad. Currently I'm playing around with the LaTex markup files that are used in the POV-Ray™ documentation.
 
==Reference==
 
==Reference==
These are in the reference section.
+
These appear in the reference section, and when they are wrapped in the <nowiki><math></math></nowiki> tags they ...
 
===blobdens===
 
===blobdens===
 
<pre>
 
<pre>
Line 13: Line 13:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>density = strength\cdot(1-(\frac {distance}{radius})^2)^2</math>
+
render as: <math>density = strength\cdot(1-(\frac {distance}{radius})^2)^2</math>
 
 
 
===curvmath===
 
===curvmath===
 
<pre>
 
<pre>
Line 53: Line 52:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
 +
render as: not done yet!
 
===lattenua===
 
===lattenua===
 
<pre>
 
<pre>
Line 63: Line 63:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>{attenuation} = \frac{2}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math>
+
render as: <math>{attenuation} = \frac{2}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math>
 
 
 
===medatten===
 
===medatten===
 
<pre>
 
<pre>
Line 75: Line 74:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>{attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math>
+
render as: <math>{attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}</math>
 
 
 
===prod===
 
===prod===
 
<pre>
 
<pre>
Line 85: Line 83:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>prod_{i=b}^n a</math>
+
render as: <math>prod_{i=b}^n a</math>
 
===sormath===
 
===sormath===
 
<pre>
 
<pre>
Line 94: Line 92:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D</math>
+
render as: <math>r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D</math>
 
===sqemath===
 
===sqemath===
 
<pre>
 
<pre>
Line 105: Line 103:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0</math>
+
render as: <math>f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0</math>
 
 
 
===sum===
 
===sum===
 
<pre>
 
<pre>
Line 115: Line 112:
 
\end{displaymath}
 
\end{displaymath}
 
</pre>
 
</pre>
Produces: <math>sum_{i=b}^n a</math>
+
render as: <math>sum_{i=b}^n a</math>
 +
==Tutorial==
 +
These appear in the tutorial section, and when they are wrapped in the <nowiki><math></math></nowiki> tags they ...
 +
===polyfunc1===
 +
<pre>
 +
% FILE: polyfunc1
 +
% ---------
 +
\begin{displaymath}
 +
  \sqrt{x^2+y^2+z^2} = r
 +
\end{displaymath}
 +
</pre>
 +
render as: <math>sqrt{x^2+y^2+z^2} = r</math>
 +
===polyfunc2===
 +
<pre>
 +
% FILE: polyfunc2
 +
% ---------
 +
\begin{displaymath}
 +
  x^2+y^2+z^2-r = 0
 +
\end{displaymath}
 +
</pre>
 +
render as: <math>x^2+y^2+z^2-r = 0</math>
 +
===polyfunc3===
 +
<pre>
 +
% FILE: polyfunc3
 +
% ---------
 +
\begin{displaymath}
 +
  z = \frac{2xy^2}{x^2+y^4}
 +
\end{displaymath}
 +
</pre>
 +
render as: <math>z = \frac{2xy^2}{x^2+y^4}</math>
 +
===polyfunc4===
 +
<pre>
 +
% FILE: polyfunc4
 +
% ---------
 +
\begin{displaymath}
 +
  x^2z + y^4z - 2xy^2 = 0
 +
\end{displaymath}
 +
</pre>
 +
render as: <math>x^2z + y^4z - 2xy^2 = 0</math>
 +
===polyfunc5===
 +
<pre>
 +
% FILE: polyfunc5
 +
% ---------
 +
\begin{displaymath}
 +
  \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
 +
\end{displaymath}
 +
</pre>
 +
render as: <math>sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2} = r_2</math>
 +
===polyfunc6===
 +
<pre>
 +
% FILE: polyfunc6
 +
% ---------
 +
\begin{displaymath}
 +
  x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
 +
  z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
 +
\end{displaymath}
 +
</pre>
 +
render as: <math>x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0</math>

Revision as of 15:36, 20 January 2009

Introduction

I'm using this area as a scratch pad. Currently I'm playing around with the LaTex markup files that are used in the POV-Ray™ documentation.

Reference

These appear in the reference section, and when they are wrapped in the <math></math> tags they ...

blobdens

% FILE: blobdens
% --------
\begin{displaymath}
  \mathit{density} =
  \mathit{strength}\cdot
  \left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2
\end{displaymath}

render as:

curvmath

  % FILE: curvmath
% --------
\begin{displaymath}
  \begin{array}{l}
    b = M \cdot x, \mathrm{with:}
    \\ \\
    b = \left[
      \begin{array}{c}
        r(j)^2 \\
        r(j+1)^2 \\
        2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\
        \hline
        h(j+1)-h(j-1) \\
        2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\
        \hline
        h(j+2)-h(j)
      \end{array}
    \right]
    \\ \\
    M = \left[
      \begin{array}{c c c c}
        h(j)^3 & h(j)^2 & h(j) & 1 \\
        h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\
        3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\
        3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0
      \end{array}
    \right]
    \\ \\
    x = \left[
      \begin{array}{c}
        A(j)\\ B(j)\\ C(j)\\ D(j)
      \end{array}
    \right]
  \end{array}
\end{displaymath}

render as: not done yet!

lattenua

% FILE: lattenua
% --------
\begin{displaymath}
  \mathit{attenuation} =
  \frac{2}
  {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}

render as:

medatten

% FILE: medatten
% --------
\begin{displaymath}
  \mathit{attenuation} =
  \frac{1}
  {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}

render as:

prod

% FILE: prod
% ----
\begin{displaymath}
  \prod_{i=b}^n a
\end{displaymath}

render as:

sormath

% sormath
% -------
\begin{displaymath}
  r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D
\end{displaymath}

render as:

sqemath

% FILE: sqemath
% -------
\begin{displaymath}
  f(x,y,z) =
  \left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)}
  \right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0
\end{displaymath}

render as:

sum

% FILE: sum
% ---
\begin{displaymath}
  \sum_{i=b}^n a
\end{displaymath}

render as:

Tutorial

These appear in the tutorial section, and when they are wrapped in the <math></math> tags they ...

polyfunc1

% FILE: polyfunc1
% ---------
\begin{displaymath}
  \sqrt{x^2+y^2+z^2} = r
\end{displaymath}

render as:

polyfunc2

% FILE: polyfunc2
% ---------
\begin{displaymath}
  x^2+y^2+z^2-r = 0
\end{displaymath}

render as:

polyfunc3

% FILE: polyfunc3
% ---------
\begin{displaymath}
  z = \frac{2xy^2}{x^2+y^4}
\end{displaymath}

render as:

polyfunc4

% FILE: polyfunc4
% ---------
\begin{displaymath}
  x^2z + y^4z - 2xy^2 = 0
\end{displaymath}

render as:

polyfunc5

% FILE: polyfunc5
% ---------
\begin{displaymath}
  \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
\end{displaymath}

render as:

polyfunc6

% FILE: polyfunc6
% ---------
\begin{displaymath}
  x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
  z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
\end{displaymath}

render as: