Difference between revisions of "Reference:Parametric"
Jump to navigation
Jump to search
Jholsenback (talk | contribs) m (1 revision: Reference Migration Initial Load) |
Jholsenback (talk | contribs) m (markup and grammar cleanup) |
||
| Line 5: | Line 5: | ||
{{#indexentry:function, parametric}} | {{#indexentry:function, parametric}} | ||
{{#indexentry:keyword, function}} | {{#indexentry:keyword, function}} | ||
| − | <p> | + | <p>While the <code>isosurface</code> object uses implicit surface functions like <strong><em>F(x,y,z) = 0</em></strong> the <code>parametric</code> object uses is a set of equations for a surface expressed in the form of the parameters that locate points on the surface. For example: <code>x(u,v)</code>, <code>y(u,v)</code>, <code>z(u,v)</code>. Each of the pairs of values for <code>u</code> and <code>v</code> gives a single point <code><x,y,z></code> in 3d space.</p> |
| − | is a set of equations for a surface expressed in the form of the parameters that locate points on | ||
| − | the surface | ||
| − | in 3d space.</p> | ||
| − | <p>The parametric object is not a solid | + | <p>The <code>parametric</code> object is not a solid it is <em>hollow</em>, like a thin shell. The syntax is as follows:</p> |
| − | |||
| − | |||
<pre> | <pre> | ||
parametric { | parametric { | ||
| Line 28: | Line 23: | ||
{{#indexentry:default values, parametric}} | {{#indexentry:default values, parametric}} | ||
| − | <p> | + | <p>The default values are:</p> |
| − | |||
<pre> | <pre> | ||
| − | accuracy : 0.001 | + | accuracy : 0.001 |
| + | contained_by : box {<-1,-1,-1>, <1,1,1>} | ||
</pre> | </pre> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{{#indexentry:contained_by, parametric}} | {{#indexentry:contained_by, parametric}} | ||
{{#indexentry:keyword, contained_by}} | {{#indexentry:keyword, contained_by}} | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{{#indexentry:max_gradient, parametric}} | {{#indexentry:max_gradient, parametric}} | ||
{{#indexentry:keyword, max_gradient}} | {{#indexentry:keyword, max_gradient}} | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{{#indexentry:accuracy, parametric}} | {{#indexentry:accuracy, parametric}} | ||
{{#indexentry:keyword, accuracy}} | {{#indexentry:keyword, accuracy}} | ||
| − | |||
| − | |||
| − | |||
{{#indexentry:precompute, parametric}} | {{#indexentry:precompute, parametric}} | ||
{{#indexentry:keyword, precompute}} | {{#indexentry:keyword, precompute}} | ||
| − | < | + | <ol> |
| − | surfaces into small ones (2^depth) and precomputes ranges of the variables(x,y,z) which you specify | + | <li>The first function calculates the <code>x</code> value of the surface, the second <code>y</code> and the third the <code>z</code> value. Any function that results in a float is allowed.</li> |
| − | after depth. The maximum depth is 20. High values of depth can produce arrays that use a lot of memory, | + | <li>The <code><u1,v1></code> and the <code><u2,v2></code> boundaries of the <code>(u,v)</code> space, in which the surface <em>has</em> to be calculated.</li> |
| − | take longer to parse and render faster. If you declare a parametric surface with the precompute keyword | + | <li>The <code>contained_by</code> <em>object</em> limits the area where POV-Ray samples for the surface of the function. The container can either be a <code>sphere</code> or a <code>box</code>.</li> |
| − | and then use it twice, all arrays are in memory only once.</ | + | <li>The <code>max_gradient</code> is the maximum magnitude of all six partial derivatives over the specified ranges of u and v. That is, if you take <em>dx/du</em>, <code>dx/dv</code>, <code>dy/du</code>, <code>dy/dv</code>, <code>dz/du</code>, and <code>dz/dv</code> and calculate them over the entire range, the <code>max_gradient</code> is the maximum of the absolute values of all of those values.</li> |
| − | + | <li>For <code>accuracy</code> smaller values produces more accurate surfaces, but take longer to render.</li> | |
| + | <li>Using <code>precompute</code> can speedup rendering of parametric surfaces. It simply divides parametric surfaces into small ones (2^depth) and precomputes the ranges of the variables (x,y,z) which you specify after depth. The maximum depth is 20. High values of depth can produce arrays that use a lot of memory, take longer to parse and render faster. If you declare a parametric surface with the <code>precompute</code> keyword and then use it twice, all arrays are in memory only once.</li> | ||
| + | </ol> | ||
<p>Example, a unit sphere:</p> | <p>Example, a unit sphere:</p> | ||
<pre> | <pre> | ||
Revision as of 21:56, 21 November 2016
While the isosurface object uses implicit surface functions like F(x,y,z) = 0 the parametric object uses is a set of equations for a surface expressed in the form of the parameters that locate points on the surface. For example: x(u,v), y(u,v), z(u,v). Each of the pairs of values for u and v gives a single point <x,y,z> in 3d space.
The parametric object is not a solid it is hollow, like a thin shell. The syntax is as follows:
parametric {
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS }
<u1,v1>, <u2,v2>
[contained_by { SPHERE | BOX }]
[max_gradient FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[precompute DEPTH, VarList]
}
The default values are:
accuracy : 0.001
contained_by : box {<-1,-1,-1>, <1,1,1>}
- The first function calculates the
xvalue of the surface, the secondyand the third thezvalue. Any function that results in a float is allowed. - The
<u1,v1>and the<u2,v2>boundaries of the(u,v)space, in which the surface has to be calculated. - The
contained_byobject limits the area where POV-Ray samples for the surface of the function. The container can either be asphereor abox. - The
max_gradientis the maximum magnitude of all six partial derivatives over the specified ranges of u and v. That is, if you take dx/du,dx/dv,dy/du,dy/dv,dz/du, anddz/dvand calculate them over the entire range, themax_gradientis the maximum of the absolute values of all of those values. - For
accuracysmaller values produces more accurate surfaces, but take longer to render. - Using
precomputecan speedup rendering of parametric surfaces. It simply divides parametric surfaces into small ones (2^depth) and precomputes the ranges of the variables (x,y,z) which you specify after depth. The maximum depth is 20. High values of depth can produce arrays that use a lot of memory, take longer to parse and render faster. If you declare a parametric surface with theprecomputekeyword and then use it twice, all arrays are in memory only once.
Example, a unit sphere:
parametric {
function { sin(u)*cos(v) }
function { sin(u)*sin(v) }
function { cos(u) }
<0,0>, <2*pi,pi>
contained_by { sphere{0, 1.1} }
max_gradient ??
accuracy 0.0001
precompute 10 x,y,z
pigment {rgb 1}
}