User:Jholsenback

From POV-Wiki
Revision as of 14:47, 14 October 2009 by Jholsenback (talk | contribs) (continued cleanup)
Jump to navigation Jump to search

Projects

I'm currently working on migrating the current documentation set to this Wiki.

Reference Section

These LaTex markup segments appear in the reference section. When they are wrapped in the <math></math> tags they ...

Blob Density

% FILE: blobdens
% --------
\begin{displaymath}
  \mathit{density} =
  \mathit{strength}\cdot
  \left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\textit{density}} = {\textit{strength}}\cdot \left(1-\left(\frac {\min (\textit{distance}, \textit{radius})} {\textit{radius}} \right)^2\right)^2}

Curve Math

  % FILE: curvmath
% --------
\begin{displaymath}
  \begin{array}{l}
    b = M \cdot x, \mathrm{with:}
    \\ \\
    b = \left[
      \begin{array}{c}
        r(j)^2 \\
        r(j+1)^2 \\
        2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\
        \hline
        h(j+1)-h(j-1) \\
        2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\
        \hline
        h(j+2)-h(j)
      \end{array}
    \right]
    \\ \\
    M = \left[
      \begin{array}{c c c c}
        h(j)^3 & h(j)^2 & h(j) & 1 \\
        h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\
        3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\
        3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0
      \end{array}
    \right]
    \\ \\
    x = \left[
      \begin{array}{c}
        A(j)\\ B(j)\\ C(j)\\ D(j)
      \end{array}
    \right]
  \end{array}
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{l} b = M \cdot x, \mathrm{with:} \\ \\ b = \left[ \begin{array}{c} r(j)^2 \\ r(j+1)^2 \\ 2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\ \hline h(j+1)-h(j-1) \\ 2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\ \hline h(j+2)-h(j) \end{array} \right] \\ \\ M = \left[ \begin{array}{c c c c} h(j)^3 & h(j)^2 & h(j) & 1 \\ h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\ 3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\ 3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0 \end{array} \right] \\ \\ x = \left[ \begin{array}{c} A(j)\\ B(j)\\ C(j)\\ D(j) \end{array} \right] \end{array} }

Light Fading

% FILE: lattenua
% --------
\begin{displaymath}
  \mathit{attenuation} =
  \frac{2}
  {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textit{attenuation} = \frac{2} {1+\left(\frac{\textit d}{\textit{fade\_distance}}\right)^\textit{fade\_power}} }

Attenuation

% FILE: medatten
% --------
\begin{displaymath}
  \mathit{attenuation} =
  \frac{1}
  {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textit {attenuation} = \frac{1}{1+\left(\frac \textit {d} \textit {fade\_distance}\right)^\textit {fade\_power}}}

Product

% FILE: prod
% ----
\begin{displaymath}
  \prod_{i=b}^n a
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod^\textit {n}_{\textit i \textit = \textit b}\textit a}

Surface of Revolution

% sormath
% -------
\begin{displaymath}
  r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D}

Superquadric Ellipsoid

% FILE: sqemath
% -------
\begin{displaymath}
  f(x,y,z) =
  \left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)}
  \right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0}

Sum

% FILE: sum
% ---
\begin{displaymath}
  \sum_{i=b}^n a
\end{displaymath}

render as:

Tutorial Section

These LaTex segments in the tutorial section. When they are wrapped in the <math></math> tags they ...

Creating the polynomial function

% FILE: polyfunc1
% ---------
\begin{displaymath}
  \sqrt{x^2+y^2+z^2} = r
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sqrt{x^2+y^2+z^2}} = r}

% FILE: polyfunc2
% ---------
\begin{displaymath}
  x^2+y^2+z^2-r = 0
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2+y^2+z^2-r = 0}

% FILE: polyfunc3
% ---------
\begin{displaymath}
  z = \frac{2xy^2}{x^2+y^4}
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = \frac{2xy^2}{x^2+y^4}}

% FILE: polyfunc4
% ---------
\begin{displaymath}
  x^2z + y^4z - 2xy^2 = 0
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2z + y^4z - 2xy^2 = 0}

% FILE: polyfunc5
% ---------
\begin{displaymath}
  \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2}} = r_2}

% FILE: polyfunc6
% ---------
\begin{displaymath}
  x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
  z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0}