User:Jholsenback

From POV-Wiki
Revision as of 13:53, 14 October 2009 by Jholsenback (talk | contribs) (LaTex cleanup)
Jump to navigation Jump to search

Projects

I'm currently working on migrating the current documentation set to this Wiki.

LaTex Markup

These Tex markup segments appear in the reference section. When they are wrapped in the <math></math> tags they ...

Blob Density

% FILE: blobdens
% --------
\begin{displaymath}
  \mathit{density} =
  \mathit{strength}\cdot
  \left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2
\end{displaymath}

render as:

Curve Math

  % FILE: curvmath
% --------
\begin{displaymath}
  \begin{array}{l}
    b = M \cdot x, \mathrm{with:}
    \\ \\
    b = \left[
      \begin{array}{c}
        r(j)^2 \\
        r(j+1)^2 \\
        2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\
        \hline
        h(j+1)-h(j-1) \\
        2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\
        \hline
        h(j+2)-h(j)
      \end{array}
    \right]
    \\ \\
    M = \left[
      \begin{array}{c c c c}
        h(j)^3 & h(j)^2 & h(j) & 1 \\
        h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\
        3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\
        3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0
      \end{array}
    \right]
    \\ \\
    x = \left[
      \begin{array}{c}
        A(j)\\ B(j)\\ C(j)\\ D(j)
      \end{array}
    \right]
  \end{array}
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{l} b = M \cdot x, \mathrm{with:} \\ \\ b = \left[ \begin{array}{c} r(j)^2 \\ r(j+1)^2 \\ 2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\ \hline h(j+1)-h(j-1) \\ 2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\ \hline h(j+2)-h(j) \end{array} \right] \\ \\ M = \left[ \begin{array}{c c c c} h(j)^3 & h(j)^2 & h(j) & 1 \\ h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\ 3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\ 3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0 \end{array} \right] \\ \\ x = \left[ \begin{array}{c} A(j)\\ B(j)\\ C(j)\\ D(j) \end{array} \right] \end{array} }

Light Fading

% FILE: lattenua
% --------
\begin{displaymath}
  \mathit{attenuation} =
  \frac{2}
  {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}

render as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textit{attenuation} = \frac{2} {1+\left(\frac{\textit d}{\textit{fade\_distance}}\right)^\textit{fade\_power}} }

Attenuation

% FILE: medatten
% --------
\begin{displaymath}
  \mathit{attenuation} =
  \frac{1}
  {1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}}

Product

% FILE: prod
% ----
\begin{displaymath}
  \prod_{i=b}^n a
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod^{n}_{i=b} a}

Surface of Revolution

% sormath
% -------
\begin{displaymath}
  r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D}

Superquadric Ellipsoid

% FILE: sqemath
% -------
\begin{displaymath}
  f(x,y,z) =
  \left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)}
  \right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0}

Sum

% FILE: sum
% ---
\begin{displaymath}
  \sum_{i=b}^n a
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^{n}_{i=b} a}

These Tex segments in the tutorial section. When they are wrapped in the <math></math> tags they ...

Creating the polynomial function

% FILE: polyfunc1
% ---------
\begin{displaymath}
  \sqrt{x^2+y^2+z^2} = r
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sqrt{x^2+y^2+z^2}} = r}

% FILE: polyfunc2
% ---------
\begin{displaymath}
  x^2+y^2+z^2-r = 0
\end{displaymath}

render as:

% FILE: polyfunc3
% ---------
\begin{displaymath}
  z = \frac{2xy^2}{x^2+y^4}
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = \frac{2xy^2}{x^2+y^4}}

% FILE: polyfunc4
% ---------
\begin{displaymath}
  x^2z + y^4z - 2xy^2 = 0
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2z + y^4z - 2xy^2 = 0}

% FILE: polyfunc5
% ---------
\begin{displaymath}
  \sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2}} = r_2}

% FILE: polyfunc6
% ---------
\begin{displaymath}
  x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
  z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
\end{displaymath}

render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0}