HowTo:Use POV-Ray with Blender

From POV-Wiki
Revision as of 16:09, 30 October 2019 by Maurice (talk | contribs)
Jump to navigation Jump to search
POVExporterLogo.png


User's page Developer's page



Features

Standard Script Information at the bottom of this page.

POV-Ray 3.7 Exporter for Blender 2.8x

POV-Ray is an an SDL based (Scene Description Language) rendering engine with a long history that makes it very stable and feature rich. The latest version of POV-Ray 3.7 can be found at: http://www.povray.org/download/
Though this exporter is currently shipped with any official Blender builds, the POV-Ray 3.7 renderer itself is not included in Blender like some other renderers are (Cycles or Freestyle for instance). Instead, users are just expected to download and install it for themselves: See the Installation page for platform specific details on how to get, install or build POV-Ray.

Download

The POV-Ray exporter is shipped with every official Blender release, so you can start using it directly.

However, after checking the logs of every commit to the source of the script for new features or bug fixes, if you find out you need an update,

  • You can download all the script at once by clicking snapshot

on this page.

  • or download a fresh blender build including scripts from generally a few days before

here.

Usage

Quick Start

1. Go to the menu File                ▶    User Preferences
1
2. Choose the Add-Ons tab and check POV-Ray 3.7 down the list of render Add-Ons.
2
3. Choose POV-Ray 3.7 from renderer choices. Then you can render as usual with the Image render button or its shortcut (F12 in default layout)
3
The image will be rendered according to parameters set in the Properties Window.

Main global render settings for instance can be changed in the Render tab.

But there are also properties for environment, material (textures), object, etc. all accessible in neighbouring tabs contextually depending on selected object (geometry, camera, light...)

4

POV-Ray Branches

Below is a comparison of some features of the two engines available to this exporter:


===== Feature/Engine/Support =====


===== POV-Ray =====


===== UberPOV =====


Full Spectral Resolution
no
yes (under development)
Supersampling
yes
yes
Alpha Mapping
yes
yes
Bump Mapping
yes
yes
Normal Mapping
no
no
Displacement Mapping
no
no
Motion Blur
no
yes
Sub Surface Scattering (SSS)
yes
yes
Volumetric Scattering (Medium)
yes
yes
Blurred Reflections
yes (very tricky)
yes
Clay Render
yes
yes
Depth of Field
yes
yes
Material Layering
yes
yes
Thin Film Coating
yes
yes
Dispersion
yes
yes
Anisotropy
no
no
Thin Film Interference
yes
yes
Complex IOR Files
no
no
Coating Thickness Absorption
yes
yes
Custom Reflectance 90
yes
yes
Custom Fresnel Curve
yes(tricky)
yes(tricky)
Sigma Texture
yes
yes
Sun-Pool Caustics
yes
yes
Ambient Occlusion
no (tricky)
yes (under developement)
Lens Shift
yes
yes
Diaphragm Circular/Polygonal
yes
yes
Per-Model Texture Coordinates
yes
yes
Texture Projection Modes
yes
yes
Front/Camera Mapping
yes(tricky)
yes(tricky)
Multiple UV Channels
no
no
Texture Tone Mapping
yes(tricky)
yes(tricky)
Procedural Textures
yes
yes
Texture Layering
yes
yes
Synthesis Texture Layering
yes
yes
Point Lighting
yes
yes
Mesh Lighting
yes
yes
Image-based Lighting
yes
yes
Physical Sun/Sky
yes(tricky)
yes(tricky)
HDRI Support
yes
yes
IES Support
no
no
Instance Support
yes
yes
Resume/Merge Render
yes
yes
Interactive Render
yes
yes
Vignetting / Bloom / Glare (Post)
yes(tricky)
yes(tricky)
Camera Response CRF (Post)
no
no
Color Balance (Post)
no
no
Multithreading
yes
yes
Region Rendering
yes
yes
Passive Emitter
yes
yes
Invisible Emitter
yes
yes
Invisible Model
yes
yes
Shadowless Model
yes
yes
Shadowless Point Lights
yes
yes
Bucket Rendering
yes
yes

How to pick a branch

Exported UI Properties

Render Properties

Error creating thumbnail: Unable to save thumbnail to destination

Radiosity

In POV-Ray, Radiosity is diffuse inter-reflection which has nothing to do with vertex color based radiosity. In fact, it is more similar to final gathering of irradiance samples and provides a noise free indirect light.

Some presets to radiosity are included, their names and settings are those of the rad_def include file shipped with POV-Ray, they set up the properties so you don't need to include the rad_def.inc in the exported pov, it's one of the many examples of what an interface like blender can bring to all POV-Ray users who are not used to have one.


Anti-aliasing

Three sampling methods are supported:

  • non-recursive
  • recursive
  • stochastic (Monte-Carlo)

The third is only available for UberPOV

Sampling depth

Values must be comprised between 1 and 9. Higher values increase render time and may even introduce some undesired blur.

Anti-alias threshold

In the simple, non-recursive method, POV-Ray initially traces one ray per pixel. If the color of a pixel differs from its neighbours (to the left or above) by at least the set threshold value, then the pixel is super-sampled by shooting a given, fixed number of additional rays. The default threshold is 0.3 but it may be changed using this Antialias_Threshold=n.n option.

BlightBulb.png
Depth of Field Without Anti-Aliasing
Using no anti aliasing when camera Depth of field is on will speed up rendering and often provide decent enough images.



Bounding method

Also called acceleration, it is set to automatic BSP (Binary space partitioning) by the exporter as it's generally the most efficient(POV-Ray 3.7 only) but other acceleration methods are available in POV-Ray.


Command line switches

Some command line arguments can be passed to POV-Ray. Arguments are separated by spaces. Command line switches consist of a / (Slash), + (plus) or - (minus) sign, followed by one or more alphabetic characters and possibly a numeric value.

Some Commonly Used Commands
-D Hide image while rendering

Use the command line switch -D to not show the rendered image in POV-Ray (slightly faster and lighter on memory). The image will be sent back to Blender after completion (on Linux this is a hidden default switch to avoid OS specific editor problems).

+WT Limit the number of threads used

+WT1 limits POV-Ray to using only one single render thread. (Likewise, +WT2 would instruct POV-Ray to use two render threads.)

+C Continue an interrupted render

+C for "Continue trace" is able to recover the point at which your last render stopped and continue it from there (even if you switched off your computer)

/EXIT Close POV-Ray after rendering the image

There is also an option in POV-Ray for windows interface to do the same:

The "On Completion" option to "Exit POV-Ray for Windows" (in the Render Menu).


BlightBulb.png
Fast Preview Renders
When first setting up your scene, and for fast preview rendering, turn off anti aliasing, depth of field, photons, Radiosity, expensive material features, and in the scene Shading panel, turn off shadows.

(other features might get turned off from this panel in future versions of the exporter) Alternatively, use the [Reference:Tracing_Options#Quality_Settings "quality" command line switches] +q1 to +q11.

These allow you to easily disable most of the CPU-intensive features.



Formatting

The exported POV-Ray file can be customized:

  • Different indentation characters to choose from.
  • Option to add comments to POV-Ray file.
  • Option to write long lists of coordinates in one line for easier browsing of the POV file (and slightly faster parsing by the renderer)
  • Choice of character encoding

Scene Properties

Color Management

sRGB is supposed to be always used currently (except for world colors which seem to still be linear in Blender Internal).

World Properties

TerranPOV.png

Background

Blender World gets exported

POV ClearBlueSky.png

Using a World Preset such as Clear Blue Sky can also setup scattering media to a natural looking atmosphere.

(sky texture currently appears a little different because of its mapping).


PovStair.png

Atmospheric Media

(to create volume lights):

  • Number of samples for media calculation
  • Atmospheric media color


Object Properties

Importance sampling

It is a priority value between 0 and 1 that can be set per object in the Object properties tab for Radiosity to shoot more rays at object that require them most. Touch this rather carefully when trying to improve render times.

Data Properties

The script exports Sky, Lights, Hair particles, Smoke, fluids, Meshes, Blobs (MetaBalls).

Camera

Depth of Field

It has to be enabled for below property to act:

The focal point of depth of field is based on Blender UI Distance field, or object field.

postJhu.jpg
Aperture

sets the blur amount. (increase to get more)


povNormalPerturbation.png

Perturbation

Normal map for camera plane, native POV procedural patterns can be used with variable

  • strength
  • turbulence
  • scale


Lamp

  • No Shadows toggle button can be used to deactivate tracing of shadows for specific lamps only
BlightBulb.png
For Realistic Light Attenuation
Use Inverse square falloff, and a small falloff distance value with a higher light intensity will give the best results with Povray's implementation of inverse square law. See this discussion



BlenderToPovraySmoke.gif

Smoke

  • A DF3 file (POV-Ray voxel format) is exported and used with a POV-Ray media container with the same dimension and resolution as Blender smoke Domain



BlenderToPovrayHair.png

Hair

  • A union of POV-Ray sphere_sweep is exported and used for each strand.
  • They can take the color of a texture applied to emitting object,
  • and shape of sphere sweep tries to emulate shape of strands.


Material Properties

Handle Lamp POV-Ray.png

Emission

BlightBulb.png
Mesh Lights
When used together with Radiosity, Emit property will allow you to create light bulbs or any luminous form that really illuminates other objects.




stylizedLevi POV-Ray.png

SSS / SSLT

Note that SSS in POV-Ray (called SSLT) is very sensitive and will give different results if the mesh normals are smooth shaded or flat.


Translucency

Illumination from the back of a surface is considered as a second and optional diffuse argument in POV-Ray.

IOR Mirror

This option is for using one consistent IOR for raytrace reflection and refraction and not breaking the law of conservation of energy between the two.

Iridescence

(Newton's thin film coating)

Caustics.png

Caustics

  • Chromatic dispersion for refractive caustics
  • Fast fake caustics (somewhat like Blender Raytransp)
  • Refractive caustics using photons
  • Reflective caustics using photons (high IOR or no mirror IOR for easier effect.)


BlightBulb.png
Faster Photons
To set up some caustics, try moving from the smallest photon depth value to a minimum at which you start to see the effect you are after.

Check off the Receive Photons object property for any object that does not really need it.(A glass object casting caustics often doesn't need to receive any itself.) Then you can balance other parameters to tune photons distribution and smoothing (gathering). Don't set the global spacing too fine in scene settings, because then you can still make it finer on each object using its spacing multiplier.

If your system has several threads, they can be used in the photons stage: one thread per light, so you can then complexify your scene lighting without overhead.



shaders

Emulation is attempted from blender for:

  • Specular and diffuse toon (no edges yet)
  • Phong and Cook Torrence (both the same)
  • Blinn (not perfectly matched)
  • WardIso
  • Fresnel and Minnaert, started but not finished yet


BlightBulb.png
Glass Like Materials
When trying to achieve some glass like material, keep low diffuse value, dark or totally black to avoid dull surface and keep clear transparency.



Texture Properties

UV coordinates

best with planar projection for now. (Silvio Falcinelli)

Texture channels

Texture influences currently exported are: Alpha ; Diffuse ; Bump ; Specular ; Mirror (uses same channel as specular) --(No other channel because of POV-Ray non uniform syntax for them)

Custom gamma

For image textures (read POV-Ray 3.7 doc before using since it generally needs not be used.)


Using Image Sequences

Custom POV Code

POV-Ray files are not just pure data files (unlike with most other renderers). They are programs, with loops, functions, etc. This means that no matter how many features this exporter could support, POV-Ray will always have much more under the hood.

Video Tutorial

Here is a demonstration of the exporter by SMcA. This video is currently being worked on and may get replaced in the future.

<youtube>PD4PmGLMyys</youtube>

Step by step

You can add custom POV code directly in Blender's text editor, all you have to do is to make sure this pov code has directly or indirectly a #declare keyword, followed by the name of your choice and the pov item you want to use. (Current POV syntax is closer to C than Python, so anything that follows two slash character ( // ) is a comment)

Adding POV code directly

Pov items can be anything but for now only the equivalent of Blender materials can be replaced with this method. In Povray, it is called texture {} don't get confused, it really includes all the material properties.

Though you can directly specify a texture {} block in POV-Ray files, the #declare directive allows to assign it to a variable and reuse it more easily. The exporter makes use of this feature by default, so you won't be able to use your custom texture, unless you declare it. Here is an example:

#declare MyTexture =
texture{ 
    pigment{ 
        brick color rgb< 0.99, 0.99, 0.99>  // color mortar
        color rgb< 0.75, 0.5, 0.30>*0.75  // color brick
        brick_size <0.25, 0.0525, 0.125> // format in x ,y and z- direction 
        mortar 0.01                      // size of the mortar 
        scale 3
    } // end of pigment
    normal {wrinkles 0.75 scale 0.01}
    finish {ambient 0.15 diffuse 0.95 phong 0.2} 
    rotate<0,0,0>  translate< 0.01, 0.00, 0.00>
} // end of texture
1. Navigate the text window menu to display the text properties View                ▶    Properties
1
2. In the text view properties option, you can chose to render 3d view and/or text. Enable Both.
3. Syntax highlight detects the following file extensions:
*.pov 
*.inc 
*.mcr 
*.ini
3
4. Some complete POV-Ray scenes are available to Templates menu from the text header.
4
5. And an Insert Menu to add just some pov code snippets at cursor's location.
5
6. Then you have to go into the material properties to the Custom POV Code field, and just type in the name of your declared item to use: MyTexture in the example Given. Then you can render your image normally and the material will be replaced.
6


Blender and POV-Ray do not have the same coordinates systems: POV is Y up while Blender is Z up, so it is to be expected that text generated content is not turned the same as exported UI items since the exporter adds a transform matrix to all exported entities. So if you want to specify orientations more intuitively by looking at the interface, some transforms have to be specified at the end of your custom blocks, for instance as follows :

scale <-1, 1, 1>  
rotate <90, 0, -90>
}

Adding POV code from include files

In any Povray scene you can use the #include directive to add items from an external Povray file. It's like the import function in Python. The files to be included have .inc as their name extension. Then in the replacement field, you can type in any of the declared names available in the include file. "Out of the box", Povray ships with a lot of include files. So you can use them for your textures, but you can also use them for some of their elements. For instance a very often used include file is one that allows to call colors by their names instead of numbers called colors.inc, so the previous example could also be written:

#include "colors.inc" 
#declare MyTexture =
texture{ 
    pigment{ 
        brick color White*0.99  // color mortar
        color rgb< 0.75, 0.5, 0.30>*0.75  // color brick
        brick_size <0.25, 0.0525, 0.125> // format in x ,y and z- direction 
        mortar 0.01                      // size of the mortar 
        scale 3
    } // end of pigment
    normal {wrinkles 0.75 scale 0.01}
    finish {ambient 0.15 diffuse 0.95 phong 0.2} 
    rotate<0,0,0>  translate< 0.01, 0.00, 0.00>
} // end of texture

Some other POV-Ray specific objects are also available: In POV-Ray a triangle mesh is just one primitive among many. You can explore the POV-Ray language by modifying the output file. and with the same method, add these primitives by hand, OR you can just pick some from the Add menu.

POV-Ray Primitives

Pressing ⇧ shiftA in the 3D View allows you to add POV-Ray specific objects in addition to native Blender objects.

exporterAddMenu.png

They are mathematically defined as opposed to Triangle meshes. The sphere, torus, cylinder or cone side will always be round and smooth when rendered, no matter how close you get, and regardless of their appearance in the 3D view, which is only a proxy.


These objects are the type of objects that get created when you import a POV-Ray file, so that ideally, you could "exchange" data back and forth between POV-Ray and Blender.

Infinite Plane

The rendered plane is actually infinite, but represented by a proxy in the 3D view, which is just very big, but still finite. Please report if you'd rather have a différent default scale.

PovInfinitePlane1.png|PovInfinitePlane2.png


Box

Based on a mesh cube the object can be transformed using move/rotate/scale

File:PovBox.png


Sphere

The sphere has a radius parameter, a location and a scale.

File:PovSphere1.png|File:PovSphere2.png


Cylinder

In POV-Ray, cylinders are defined by radius, base point and end point. For convenience, move/rotate/escale can be used to the same effect.

File:PovCylinder1.png|File:PovCylinder2.png


Cone

Cones have a basis radius and end radius

File:PovCone1.png|File:PovCone2.png


Torus

Torus has a main radius and a section radius.

File:PovTorus1.png|File:Torus2.png


Parametric

This is a surface generated from the combination of three mathematical equations


Rainbow

The rainbow is a view dependant effect

File:PovRainbow1.png|File:PovRainbow2.png


Lathe

This object behaves like the Blender screw modifier to create surfaces by revolving a spline except instead of being tesselated beforehand, it follows the mathematical curvature of the spline so you won't see any polygons no matter how close you zoom.

File:PovLathe1.png|File:PovLathe2.png



Prism

This is a POV-Ray primitive that simply extrudes a shape

File:PovPrism.png



Superquadric Ellipsoid

A quite versatile tool that can provide quick models for cushion or star shaped objects {

PovSuperquadricEllipsoid.gif
PovSuperquadricEllipsoid2.gif



HeightField

This is a displacement of a surface following a texture. Tessellation also happens at render time, so you don't need to subdivide anything before.

PovHeightField1.png|PovHeightField2.png


Read More

Sphere Sweep

This POV-Ray primitive sweeps a sphere a long as spline to create an interpolated form that can have variations of radius along the spline. It is also used to export hair strands.

|File:PovSphereSweep2.png



Blob Sphere

Like Blender Metaballs

File:PovBlob1.png|File:PovBlob2.png|File:PovBlob3.png


Isosurfaces

In POV-Ray isosurfaces are objects that can combine and be deformed using pigments or equations

Isosurface Box

An isosurfacecomponent shaped as a box

Isosurface Sphere

An isosurfacecomponent shaped as a sphere

Supertorus

An isosurface shaped as a torus with deforming parameters equivalent to those of the superellipsoid.

Parameters (POV-Ray names):

  • MajorRadius, MinorRadius = Base radii for the torus.
  • MajorControl, MinorControl = Controls for the roundness of the supertorus. Use numbers in the range [0, 1].
  • Accuracy = The accuracy parameter.
  • MaxGradient = The max_gradient parameter.

Macro based primitives

Two primitives are actually macros that generate a mesh from curves before render time:

  • Polygon to Circle Blending
File:PovPolyToCircle1.png|File:PovPolyToCircle2.png


  • Loft
File:PovLoft1.png|File:PovLoft2.png


Importing POV-Ray files

1. From the same ⇧ shiftA menu, you can also import povray files
2. Or otherwise, clicking File                ▶    Import from the main header menu
3. You can then select one or several files (holding ⇧ shift or pressing B for drag box selection

Merging POV scripted Animations

Standard Script Information

{{#if:If POV-Ray 3.7 is installed, activate the addon in the menu File                ▶    User Preferences. Choose it as the renderer and render with F12.| {{#if:Render| {{#if:Release| {{#if:After May the 10th 2011, some development to the script limited backwards compatibility: If you set up some files prior to that and always use the latest exporter from SVN. It is advised to run the update script and resave your scene with the new version: get to the search bar with Space and type pov to access this command.|
render_povray
Renders scenes with POV-Ray 3.7
UI location Renderer rolldown menu
Usage If POV-Ray 3.7 is installed, activate the addon in the menu File                ▶    User Preferences. Choose it as the renderer and render with F12.

}}

Version 0.0.9 Author(s) Campbell Barton, Silvio Falcinelli, Maurice Raybaud, Constantin Rahn, Bastien Montagne, Leonid Desyatkov
Blender 2.57 License GPL
Category Render Distribution Category Render

}}| {{#if:Release|

Distribution Release

}} }}

Note(s) After May the 10th 2011, some development to the script limited backwards compatibility: If you set up some files prior to that and always use the latest exporter from SVN. It is advised to run the update script and resave your scene with the new version: get to the search bar with Space and type pov to access this command.

}}


{{#if:Here are the logs of every commit to the source: [1]
  • You can download all the script at once by clicking snapshot here:
[2]
  • or download a fresh blender build including scripts from generally a few days before here:
[3] {{#if:Used standard Python modules| {{#if:
ExclamationMark.png
Requires versions of POV-Ray after 3.7/3.8, it won't work with POV-Ray 3.6


|

{{#if:|
Executable information
File name (Python script)+ POV-Ray 3.7
Current version download Here are the logs of every commit to the source:

[4]

  • You can download all the script at once by clicking snapshot here:

[5]

  • or download a fresh blender build including scripts from generally a few days before here:

[6]

}}

Python modules Used standard Python modules

}}

External Python Modules or dependencies
ExclamationMark.png
Requires versions of POV-Ray after 3.7/3.8, it won't work with POV-Ray 3.6


}}

Data

}}


{{#if:http://povray.org/%7C {{#if:Dev:2.5/Py/Scripts/Render/POV-Ray| {{#if:Currently Important: Many properties have been broken in Blender 2.8... Use 2.79 if you want to be safe|
{{#if:Please report any bug or request!|
Warning Please report any bug or request!

}}

Links http://povray.org/

}}

Release Log Dev:2.5/Py/Scripts/Render/POV-Ray

}}

Known Issues Currently Important: Many properties have been broken in Blender 2.8... Use 2.79 if you want to be safe

}}