User:Jholsenback
Random Scratchings
I'm currently working on migrating the current documentation set to this Wiki. There isn't any content yet, so I've just planted at flag for now
LaTex
These appear in the reference section, and when they are wrapped in the <math></math> tags they ...
% FILE: blobdens
% --------
\begin{displaymath}
\mathit{density} =
\mathit{strength}\cdot
\left(1-\left(\frac{\mathit{distance}}{\mathit{radius}}\right)^2\right)^2
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle density = strength\cdot(1-(\frac {distance}{radius})^2)^2}
% FILE: curvmath
% --------
\begin{displaymath}
\begin{array}{l}
b = M \cdot x, \mathrm{with:}
\\ \\
b = \left[
\begin{array}{c}
r(j)^2 \\
r(j+1)^2 \\
2 \cdot r(j) \cdot (r(j+1)-r(j-1)) \\
\hline
h(j+1)-h(j-1) \\
2 \cdot r(j+1) \cdot (r(j+2)-r(j)) \\
\hline
h(j+2)-h(j)
\end{array}
\right]
\\ \\
M = \left[
\begin{array}{c c c c}
h(j)^3 & h(j)^2 & h(j) & 1 \\
h(j+1)^3 & h(j+1)^2 & h(j+1) & 1 \\
3\cdot h(j)^2 & 2\cdot h(j) & 1 & 0 \\
3\cdot h(j+1)^2 & 2\cdot h(j+1) & 1 & 0
\end{array}
\right]
\\ \\
x = \left[
\begin{array}{c}
A(j)\\ B(j)\\ C(j)\\ D(j)
\end{array}
\right]
\end{array}
\end{displaymath}
render as: not done yet!
% FILE: lattenua
% --------
\begin{displaymath}
\mathit{attenuation} =
\frac{2}
{1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {attenuation} = \frac{2}{1+(\frac{d}{fade\_distance})^{fade\_power}}}
% FILE: medatten
% --------
\begin{displaymath}
\mathit{attenuation} =
\frac{1}
{1+\left(\frac{d}{\mathit{fade\_distance}}\right)^\mathit{fade\_power}}
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {attenuation} = \frac{1}{1+(\frac{d}{fade\_distance})^{fade\_power}}}
% FILE: prod
% ----
\begin{displaymath}
\prod_{i=b}^n a
\end{displaymath}
render as:
% sormath
% -------
\begin{displaymath}
r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^2 = f(h) = A\cdot h^3 + B\cdot h^2 + C\cdot h + D}
% FILE: sqemath
% -------
\begin{displaymath}
f(x,y,z) =
\left(|x|^{\left(\frac{2}{e}\right)} + |y|^{\left(\frac{2}{e}\right)}
\right)^{\left(\frac{e}{n}\right)} + |z|^{\left(\frac{2}{n}\right)} - 1 = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y,z) = (|x|^{(\frac{2}{e})} + |y|^{(\frac{2}{e})})^{(\frac{e}{n})} + |z|^{(\frac{2}{n})} - 1 = 0}
% FILE: sum
% ---
\begin{displaymath}
\sum_{i=b}^n a
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sum_{i=b}^n a}
These appear in the tutorial section, and when they are wrapped in the <math></math> tags they ...
% FILE: polyfunc1
% ---------
\begin{displaymath}
\sqrt{x^2+y^2+z^2} = r
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sqrt{x^2+y^2+z^2} = r}
% FILE: polyfunc2
% ---------
\begin{displaymath}
x^2+y^2+z^2-r = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2+y^2+z^2-r = 0}
% FILE: polyfunc3
% ---------
\begin{displaymath}
z = \frac{2xy^2}{x^2+y^4}
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = \frac{2xy^2}{x^2+y^4}}
% FILE: polyfunc4
% ---------
\begin{displaymath}
x^2z + y^4z - 2xy^2 = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2z + y^4z - 2xy^2 = 0}
% FILE: polyfunc5
% ---------
\begin{displaymath}
\sqrt{\left(\sqrt{x^2+z^2}-r_1\right)^2+y^2} = r_2
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sqrt{(\sqrt{x^2+z^2}-r_1)^2+y^2} = r_2}
% FILE: polyfunc6
% ---------
\begin{displaymath}
x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+
z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0
\end{displaymath}
render as: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4+2x^2y^2+2x^2z^2-2(r_1^2+r_2^2)x^2+y^4+2y^2z^2+2(r_1^2-r_2^2)y^2+z^4-2(r_1^2+r_2^2)z^2+(r_1^2-r_2^2)^2 = 0}