


Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Bézier Bicubic Patches
and Bernstein Polynomials

William H. Walker

POV-Ray user “Bald Eagle”

New Hampshire, united States of
America

10. August 2020

ABSTRACT

The fundamentals of Bézier
splines and surfaces is
presented, and the Dbasics of
constructing Bézier bicubic
patches, adjoining them, and
texturing them with uv-mapped
patterns in POV-Ray is covered.
Advanced methods for generating
smooth curves are discussed.

Sophisticated CAD-style tools for
analyzing and visualizing surface
curvature were developed by the
author for use in POV-Ray.

MOTIVATION

In the absence of a suitable
GUI modeler with the capability
to export to POV-Ray'’s Scene
Description Language (SDL), it
can be difficult for many users
to implement bicubic patches in a
manner that is easy and efficient
enough to make using them
worthwhile; this paper seeks to
remedy that. It also aims to
illustrate some of the practical

and artistic aspects of Bézier
curves and surfaces, such that
users might wuse the examples

provided as a starting point for

their work, and as a useful
reference during development of
their scenes. It is hoped that
by covering some of the basic
concepts about how the curves and
surfaces are generated and
manipulated, that the reader may
feel inspired to experiment with
these objects in their scenes.

SCOPE

This work is primarily
directed towards novices and
hobbyists in computer graphics

and is neither authoritative nor

complete. It focuses on modeling
surfaces in the Persistence of
Vision ray-tracer (www . POV-
Ray.orgqg), and therefore code
examples will employ its Scene
Description Language syntax

(SDL), but the material presented
is applicable to generating
splines and surfaces in many
other software applications and
programming languages. Most of
the mathematics involved are the

basics of what is typically
presented in a high-school
calculus course. The author
claims no special knowledge or
skill in this area, and
everything in this paper was
learned from scratch using

nothing but information available
online.

INTRODUCTION

Bézier curves are parametric
curves. Rather than being
implicit functions in x, y, and

z, they are instead defined by a
parameter t upon which the values



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

of x, y, and 2z are dependent.
One can think of this by
imagining any curve — for example
a long, winding road going from
Point A to Point B through a
mountainous region. Any point on
the road may be located by
determining what percentage of
the trip has been completed. At
any given percentage P, one can
determine where they are on the
map: E-W, N-S, and elevation.
Bézier patches are surfaces
defined by a 2D grid of Bézier
curves and are parametric
functions of parameters u and v.
One might think of this 1like the

numbers for outdoor seating,
where in one direction are the
aisles, and in the other the

individual seats are arranged in
rOwsS. Although they may be set
up on rolling hills or in an

amphitheater, all of the seat
coordinates are still aisle u,
seat v.
Linear Curve

A linear Bézier curve 1is

equivalent to a simple linear
interpolation between two points,
based on the parameter t over the
range [0, 1]. The result can be
considered as a blend, or mixing
of the two points, their relative
proportions being dependent on a
sliding scale. Another way of
saying this, is that it is a
curve defined by the function
F(t) = <x, y, 2z>.

Illustration 1: Linear Bézier curve

At t = 0, the function
evaluates to 100% P1 and 0% P2.
At t = 1, the function evaluates
to 0% Pl and 100% P2. We can
easily write a macro in POV-Ray
to perform  this calculation,

which represents a traversal
along a vector.
#macro Lerp (_P1, P2, T)

#local Pmid =
(1-T)* Pl + (T* P2);
_Pmid

#end

Quadratic curve

A quadratic Bézier curve is
defined by three points, and is
the linear interpolation of the
results of two other 1linear
interpolations.



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Illustration 2: Quadratic Bézier curve

As t progresses from 0 to 1,
the red points are interpolated
between P1 and P2, and the green
points are interpolated between
P2 and P3 to form the endpoints
of the series of blue lines. A
final interpolation is performed
along the blue lines to calculate
the blue points which actually
form the quadratic Bézier curve.

$for (T, 0, 1, 0.1)
RedPoint = Lerp (P1,
GreenPoint = Lerp (P2,
BluePoint =
Lerp (RedPoint, GreenPoint, T);

#end

P2, T);
P3, T);

Higher-order Bézier curves are

constructed in an analogous
manner, simply with more control
points and more interpolation
steps. It is important to note

at this point that Bézier curves
and surfaces are approximations,
not interpolations. Excluding
the linear case, the curve
generated by the Bézier curve

only intersects the endpoints,
not the “internal” control
points.
Cubic Bézier curve

A cubic Bézier curve is
defined by four ©points, and

requires 6 linear interpolations.
The red, green, and blue points
are linear interpolations between
the four control ©points that
construct the two sets of gray
lines. Two sets of gray points
are linear interpolations along
the gray 1lines that form the
endpoints of the blue lines. A
final linear interpolation along
the blue lines gives the black
points which lie along the cubic
Bézier curve.

Illustration 3: Cubic Bézier curve

This method of layering linear
interpolations on top of previous

interpolations, was invented by
Paul de Faget de Casteljau in
1963 (based on a summation of
equations developed by Sergei

Natanovich Bernstein in 1912%') at



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

the
and

Citroén automobile company?
was subsequently adopted as
the primary computational method
for efficiently and accurately
describing the complex curves of
auto bodies, using only a small
number of data points.

Rather than a 1long recursive
algorithm, a more direct method
of determining the points on the
curve is by mathematically
evaluating a series of parametric
polynomial equations. This was
the achievement of Pierre Bézier
at Renault, and independently
reproduced de Casteljau’s result
though by a different method.?
The same cubic curve generated by
four levels of interpolation is
obtained by summing the four
terms of the equation:

A(1-T)*+3BT(1-T)?+3CT?(1-T)+DT?
This is the same equation that

is used internally by POV-Ray to
evaluate a cubic Bézier spline.

Illustration 4: Cubic Bézier point positions
calculated using the Bernstein polynomial

Properties of Bézier curves

Bézier curves are often
described 1in the 1literature as
being affinely invariant. All

this means is that you can rotate
and translate it all you want,
but it will otherwise still be
the same shape. This is because
unlike a mathematical curve 1like
a parabola, whose shape is
determined by the exact x value,
a Bézier curve is not an implicit
function of its specific spatial
position, but a parametric
function of the control points
used to define it. Its control
points can be moved as a set
anywhere in space, but the curve
is defined only by their relative
positions. Moving the control
points as a unit only changes the
position or orientation of the
surface, it does not change its
shape. Returning to our simple
linear curve, it is intuitively
self-evident that a line between
two points will not change if the
end points are rotated or
translated as a unit. Since the
Bézier curve is, in a sense, the
result of a series of progressive
linear interpolations, then it
too retains its shape, regardless
of the overall transformation of
it control points, because the
curve is defined by the relative
positions of the control points
to each other, not their absolute
position in space.

The curve begins and ends at
the first and last control point,
and resides inside of the polygon



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

formed by the control points, or
the “convex hull”. Changing any
control point affects the entire
curve, to varying degrees, but
there is no localized control of
any given section of the curve.

of special importance for
modeling, the beginning and end
portions of the curve are tangent
with the sides of the polygon
where they intersect with the
control endpoints. The curve
always intersects these two
endpoints, but never intersects
any intermediate control points.
This is important because if two
curves needed to be joined
smoothly, like the top and bottom
portions of an “S”, then all that
needs to be done is have the last
two control points of the first
curve, and the first two control
points of the second curve all
lie on the same line. They will
therefore have the same slope,
and the curves defined by those
control points will not only be
continuous, but smoothly
connected as well.

Bicubic patches

If we look at the arch formed
by the cubic Bézier curve in
Illustration 4, we can imagine 3
more copies of that curve
distributed in the 2z-direction,
with the same points on each
curve being connected with a
straight line to generate a mesh
like an arched tunnel. This mesh
would be cubic in one dimension
(the splines), and linear (the
connecting lines) in the other.

To form a bicubic mesh, we could
connect the arches in the z-
direction not with straight
lines, but with other cubic
Bézier curves that are composed

of four control points oriented

in the z-direction instead,
replacing all of the control
points in the copy arches with

these new points. By doing so,
we create a series of Bézier
curves in the x,y-plane that are
simultaneously a series of Bézier
curves in the z,y-plane. This
results in a surface that is the
tensor product of eight Bézier
curves. Now, when these different
Bézier curves are connected, we
get not a straight tunnel, but a
complex surface as the control
points of the Bézier curve in one
dimension are swept through the
Bézier curves in the other.

Illustration 5: A Bézier patch used to model a
complex surface

There is nothing special about
this, it is just the sum of a few
simple functions that are the



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

coefficients of vector quantities
(the control points). Indeed, a
Bézier patch can be created using
a parametric {} object in POV-Ray
by using the u and v parameters
in three separate equations for
the x, y, and z components of the
surface.

parametric {
function {BezierX (u,
function {BezierY (u,
function {BezierZ (u,
<0, 0>, <1, 1>
contained by {box {bMin,
}

v)}
v)}
v)}

bMax}}

Illustration 6: A Bézier patch rendered using
POV-Ray's parametric { } object

uv-Mapping
The uv-mapping of Bézier
patches 1is easy to understand

because the interpolation in one
direction of the Bézier patch
corresponds to the image or
texture data in the u dimension,
and the same interpolation in the
orthogonal direction of the patch

similarly corresponds to the same
texture data in the v dimension.

Hllustration 7: uv-mapping of a simple Bézier
surface

Selecting a specific portion
of the texture to be mapped is
also easily done, as the uv
coordinates of the control points
can be defined, and thus the
patch can be fully covered with
only a sub-rectangle of an image
map or other planar texture.

In order to change the way a
patch is mapped, one need only
change the uv-vectors. Since the
texture to be mapped runs, by
definition, from 0 to 1 in both
the u and v dimensions,
specifying uv-vectors with
intermediate values results in
mapping only the portion of the
texture that lies in the region
defined by the uv-vectors. This
may result in compression or
expansion of the texture.



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Illustration 8: Effect of changing the range of the
uv-vector coordinates

Since the uv-vectors are
independent of the geometric
coordinates of the Bézier patch,

any arrangement 1is possible, and
the texture may Dbe flipped,
sheared, rotated, or twisted as a

result of the choice of specific
uv-coordinates and their ordering
in the Bézier patch definition.

<u,v> = <075, 1> <u,ve =<l 1> <u, v> =<0, 1>

A e e g R Ay B

A
2 R
5

5 5
: ;
2 81403r80 AVHYAOd IHIL &
g

A
£
i
]
A
&
=
&
7
°
o
A

Illustration 9: A shearing effect and a rotation
due to uv-vector values

It is important to note that

it is the orientation of the
texture being uv-mapped to the
surface that is changed, not the
spatial coordinates of the
bicubic patch itself. So Dby

switching the right and left or
top and bottom pairs of vectors,
the texture can be flipped or
mirrored yet the original surface
normal is retained. Assigning
values outside of the 0-1 range
results in either a smaller uv-

mapped texture if the once
keyword is specified in an
image map pigment, or else a
repetetive tiling of the uv-

mapped pattern.

Illustration 10: Tiling a pattern and twisting the
right half 180 deg

0dd arrangements of uv-vectors
can give odd and unexpected
results which may be puzzling. A
naive expectation might be that
the uv-vectors of the texture are
simply translated to the corners
of the patch and everything in



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

between 1is “stretched”. But a
more thorough analysis and
visualization of the process of
how the resulting uv-map 1is
generated explains how initially
unexpected results are entirely

logical, once one understands the
exact process.

Consider the following
situation where the wuv-vectors
form a concave hull. Linearly
interpolating up the sides from
the bottom shows how the v

isolines form a deCasteljau-style
pattern and include an area
outside of the region enclosed by
the uv-vectors. Even more
suprising is that the isolines
double-back over the red and
green pencils, causing them to be
sharpened on both sides in the
final image!

W=

Illustration 11: Unexpected and surprising results
can be obtained by odd uv-mappings

Smoothly joining Bézier patches
In order to Jjoin or “stitch”

Bézier patches together smoothly

to form a continuous surface, it

is necessary to understand a few
basic concepts. The smoothness
of a «curve can be expressed
mathematically, and there are two
sets of metrics used to describe
the “fairing” of a curve. G" is a
geometric continuity concerned
with how two curves behave at the
point where they touch. C" is a
more stringent metric concerned
with the differentiability of the
two underlying functions of the
curves where they are joined.

G° continuity means that the
zeroth derivatives of two curves

are the same at their
intersection. This Jjust means
that the endpoints of two
separate Bézier curves meet at
the same point.

G'! continuity means that the

direction of the tangent vectors
are identical.

G* continuity means that the
curvature of the two curves where
they meet is the same.

To assist in creating smoothly
connected Bézier splines and
patches, a number of useful
techniques have been developed.

Tangent vector direction and size

Since Bézier curves intersect
their endpoints, it is trivial to
concatenate multiple Bézier
splines to form a continuous
curve. To make them flow
smoothly without corners or
cusps, it is useful to know that
Bézier <curves are tangent to
their control polygon at either
endpoint. Simply extending the
vector defined by the 1last two



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

control points in the first
segment by some amount gives us
coordinates of a second control
point necessary for both curves
to be G' continuous.

Now, for the curves to
actually be C' continuous, the
tangent vectors need to be equal
in both direction and magnitude.
To do this 1is fairly simple,
requiring only that we add the
same vector defined by the last
two control points in the first
segment to the first control
point of the second segment.
This gives us the coordinates of
the second control point
necessary for both curves to be
C' continuous. In mathematical
terms, differentiating the
Bernstein polynomials of each
spline gives us the first
derivative F’(t), that we can use
to calculate the instantaneous
slope of both curves at the
endpoints. These are the tangent
lines where the curves meet, and
not only will +the geometric
direction of the tangent lines be
the same, the wvalue of the
parametric equation F’'(t) for
each curve will be identical at
the point where they meet.

Joining Bézier patches even more
smoothly

Although two curves can meet
with tangency, there is still an

abrupt quality to the surface
formed. This can result in a
visible 1line or crease at the
joint, or in noticeable sharp

aberrations in the highlights and
reflections of the surface.

In order to create an even
smoother transition, one more
additional degree of smoothness
must be achieved. A typical

example of G' tangency is the %-
round edge of a rounded square or

cube, formed by the wunion of
circles and lines, or spheres,
cylinders and planes. This
corner-rounding is often used in
wooden articles or simple
geometric models, and the 1line

where the rounding terminates is
a pronounced transition. This
can be described mathematically
by comparing the curvature of the
two curves that meet. A circle,
cylinder, or sphere has a finite
radius, and a straight 1line or
flat surface can be thought of as
a circle, «cylinder, or sphere
with an infinite radius. That'’s
a big jump in curvature.

Both a %-circle and a line can
be adequately represented by
Bézier splines, and can meet with
G' continuity. By adjusting the
control points one step farther
away than was done to achieve
tangency, we can create two
curves that are not only tangent,
but which have the same radius of
curvature where they meet (G?).

With tangency, it is easy to
use the control polygon to
visually and arithmetically join
the two curves at that level of
smoothness. Since curvature is a
more advanced level of modeling
that requires more math to
decribe and get right, there are



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

several tools available for the
designer and modeler to visually

and intuituively grasp how the
curves need to be adjusted.
Author’s note: I am only
speculating, but I believe that
if the length and angle of the
second leg of the control
polygons were the same, then the

curvature of the Bézier splines
would be the same there as well.
Caveat emptor.

In order to calculate the
curvature of a spline, one needs
to make use of the first and

second derivatives of the curve
to calculate the signed curvature
K (kappa).

K =F' (X)F''(y) — F'"(y)F'"(x)
[F'(xX)"2 + F'(y)"2]1"(3/2)

Formulas for the first and
second derivatives of Bernstein
polynomials are available, and so
assembling all of the necessary
terms to calculate the curvature
is possible.

Curvature combs
Once this is accomplished, a
very useful CAD/CAGD-style tool

called a curvature comb is
available to compare the
curvatures of adjacent Bézier
splines. By plotting cylinders

or surfaces along the spline that
stand away from it by the amount
of curvature at each point, the
curvature of two splines can be
visually (and numerically)
compared. Color-coding by
curvature is possible, and which

side of the spline the comb lies
on indicates whether the spline
has a positive (convex) or
negative (concave) curvature in
that region.

10

Illustration 12: Curvature comb showing
mismatched spline curvatures

It took about a week or two of
evenings to research all of the
aspects of splines, smoothness,
and curvature presented here, and
another week to filter out false
leads and actually <code the
equations for the derivatives and
instantaneous spline curvature.
A series of renders verified that
all of the calculations were
right for the tangent, concavity,
curvature, and finally the
spline-length combs.

[visualize curvature of surface
with cylinders or color map: WIP]

Zebra lines

A simpler and less arduous
method that relies on the visual
appearance of a surface is called



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

of
be
by
of

an isophote. These are lines
constant brightness that can
generated on a surface
illuminating it with an array
parallel 1light sources, such as
fluorescent tubes. The result is
a black and white striped pattern
distributed over the reflective
surface. Digitally, this can be
readily simulated using a single
patterned 1light source that is
rendered invisible in the scene.
The *“light source” can be as
simple as a sky sphere with a
light-emissive texture:

texture {pigment {gradient x}
finish {emission 1}}

((((((((((({((g

Illustration 13: Using "zebra-stripe" reflections
to visualize changes in curvature

The heightfield on the left
shows a surface generated by a
smooth algebraic function, and
the lines are smoothly curved.
The rounded box on the right
shows the abrupt angular
transitions where the curvatures

11

of the adjacent surfaces suddenly
change.

These zebra stripe lines,
being reflections, are dependent
upon a static viewing position,
and so moving real-world objects
or changing the arrangement of
digital models through 1lighting,
rotation, translation, or camera
position change the patterns of
lines.

Non-reflective surfaces may
appear smooth with Gl continuity,
but if the surface is reflective,
it may show irregularities due to
mismatched curvature. Matching
the curvature will produce smooth
reflections. An additional level
of smoothness, G3 where the
rates of curvature change were
the same, would produce smooth
and even reflections.

Illustration 14: Pairs of Bézier surfaces showing
the changes in reflections generated by different
levels of geometric continuity and smoothness

Digital Isophotes
In order to overcome the
limitations of the reflective



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

isophote, a very similar method
relying on how a surface is
digitally patterned can be used
to make isophote 1lines. The

angle of the surface compared to
some reference vector is used to
generate the color map of the
object. This is trivially
accomplished in POV-Ray using the
slope pigment pattern.

#declare isophote vector = x;
slope {isophote vector}

Changing the scale of the
pattern produces thinner, more

frequent bands, and defining a
color map to create sharp lines
will produce a pattern that 1is
more like the elevation isolines
on a geographic terrain map.

Using constant-angle (isophote) lines to analyze curvature

W

Isophote reference vector

Illustration 15: Using a digital isophote pattern
to visualize surface curvature

Since the pattern is dependent
upon a vector that can be rotated
and translated with the objects,
it is invariant to viewing angle
and can be animated or matrix

12

transformed in a modeler without
changing the surface pattern.

Bernstein Polynomials

The Bernstein polynomial is a
linear combination of a set of
basis polynomials developed by
Sergei Natanovich Bernstein as a
means of proving the Weierstrass
approximation theorem: Any
continuous function on a closed
and bounded interval can be
uniformly approximated on that
interval by polynomials to any
degree of accuracy.
This means that, given a curve
ANY curve if we introduce a

sufficient number of terms and
raise the degree high enough
(employ pow (x, 27), etc.) then
we can get arbitrarily close to
the actual shape of the curve

using only polynomial equations.
Polynomial equations are used
because they are well defined
functions that are easily
manipulated, are differentiable,
which is important when
continuity and curvature must be
exact, and there is a fair degree
of control over the complexity of
the curve’s shape. There are
trade-offs when employing
polynomials for modeling and
other practical purposes.
Quadratic curves don’t have many

control points, or degrees of
freedom, and have no inflecion
points — where the curve changes
direction. Having only 3 control
points, they are also completely
planar. Trying to interpolate an
entire curve with higher order



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

polynomials becomes costly to
evaluate, and suffers from a
progressively more pronounced

oscillation effect that is called
Runge’s phenomenon, discovered by
Carl David Tolmé Runge in 1901
when investigating the magnitude
of polynomial interpolation
errors.* As you can see in the
following graph, the polynomial
correctly intersects all of the
points, but deviates more from
the average of the data the
farther from the center it gets.
The other problem with the use of

polynomial interpolation is
numeric instability: slightly
changing a single ©point can

drastically change the shape of
the entire curve. There is also
no unique polynomial which
intersects a given set of points,
and no well-defined way to
determine which of the infinite
number of polynomials best fits
any given curve.

Illustration 16: A Lagrange polynomial
interpolation showing the serious “ringing”
problem of Runge's phonomenon

13

With quadratic
changing one of the
points will result in a 1large
change to the whole curve. With
cubic splines, perturbations
decay exponentially, with each
point further away from the
change, the magnitude of the
deviation is multiplied by
-0.268.°°

A practical compromise is a
cubic Bézier spline which has an
inflection point, and is the
minimum degree to be able to
twist the curve in 3-dimensional
space. It’'s also the lowest
degree that allows separate
control of the two endpoints and
their derivatives. Long curves

splines,
control

are typically composite splines
composed of contiguous, smoothly-
joined cubic Bézier splines.

Curve segments requiring detailed
shaping, or very high degrees of
continuity and smoothing can be
easily be degree elevated or are
initially modeled as splines of
degree 6 or 7.

Although all of the detailed
mathematics may at first sound
complicated, the basic principle
is the same as our initial linear
interpolation example between 2
points. In the case of the
linear interpolation, as soon as
t increases, the effect of the
starting point begins to
diminish, while the effect of the
end point progressively grows.
The influence of one point gets
“handed off” to the other. With
the summed  basis polynomials



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

describing a Bézier spline, as
soon as t increases, the effect
of the starting point begins to
diminish, while the effect all of
the other control points begins
to grow. Once the second
polynomial peaks, the influence
of the second control point is at
a maximum, and then the third
control point begins to dominate

the position of the spline.
Finally, the last polynomial
progressively increases while the
influence of all the other
control points fades completely
out. This is why the spline
actually passes through the

endpoints but is only influenced
by the “internal” control points.
The sum  of all the basis

polynomials at any given value of
t is always one.

Hllustration 17: The Bernstein polynomial terms
for a cubic Bézier curve. The black line is the
sum of the colored curves.

For a bicubic Bézier surface,
the same thing happens, only in
two dimensions. This is probably

difficult to visualize, but it
works much 1like the rows and
columns of a spreadsheet. In
either dimension, there is a

complete cubic basis spline that
is multiplied by the wvalue of an
orthogonal Bernstein function as
it progresses in that direction.
Again, the sum of all the basis
polynomials at any given value of
u or v is always one. This gives
us a unit square. If the points
are the result of control point
coordinates multiplied by the
product of all the basis
polynomials at that point, then
the unit square is curved and
give the final

bicubic Bézier

stretched to
the

surface of
patch.

Illustration 18: The sixteen Bernstein basis
polynomials over the domain of [u, v] rendered as
individual isosurface functions, with the sum of
all 16 functions illustrating how they all add up
to 1 over the entire domain of the patch

Indeed, since all of the
functions are simply used to
compute the vector components of



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

every point on the surface of the
patch, a bicubic Bézier patch
can be created wusing functions
composed of the x, vy, and =z
values of the control points, the
Bernstein basis polynomials, and
then rendered as a parametric
isosurface {} object in POV-Ray.
This is much slower than
rendering an actual bicubic patch
primitive, but one of the nice
advantages of this method is that
there is much greater control
over the detailed appearance of
the surface.

Illustration 19: The product of all 16 Bernstein
polynomials and control points describing a
bicubic Bézier patch, rendered as a POV-Ray
isosurface {} object

To illustrate an analogy, we
can think of a flat plane as an

infinite series of adjacent
individual lines, all placed side
by side. In the same way, we can

visualize a Bézier surface as an
infinite number of side by side
Bézier splines in either
direction. This is Jjust 1like
considering something either as a

15

collection of columns, or a
collection of rows. And of
course, they are both. This can
be visualized as the orthogonal
threads in a piece of fabric: the
v direction forming the warp,

with the u direction forming the
weft. And with complete control
of the surface in function form,

we can use the Bernstein
polynomials and the control point
values to modulate POV-Ray'’s
internal f meshl function to
provide a more concrete visual
example.

Illustration 20: The same functions as in
Illustration 17, used to modify POV-Ray's
internal f_mesh1 function

So in the same way that a
piece of cloth deforms according
to the position of an object it
is draped over, the warp and the
weft both moving in response to
the object, so the interdependent
splines of a Bézier patch change
in response to the positions of
its control points. A plethora
of interesting modifications can



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

be made to the basic Bézier
surface in this way, using
functions to effectively create a
displacement map of the surface
that is independent of the degree
of the Bernstein polynomials and
number of control points.

Degree Elevation

Without going into too much
detail, it is useful to know that
Bézier splines of one degree can
be represented by a Bézier spline

of a higher degree. Therefore,
a Bézier spline with only 4
control points can be converted
to one with 5 or 6 control
points, still have exactly the
same shape, and the exact
coordinates of the new control

points can be easily calculated.

Degree Elevation of a Bezier curve

4

Illustration 21: The control grids of a Bézier
spline showing the progressive degree elevation
of a cubic spline with 4 control points, to one of
degree 8, with 9 control points. The spline shape
and position of any point on the curve at t stays
exactly the same.

This is useful for situations
where more detail needs to be

represented, or a finer degree of
control over the shape of the
curve 1is needed. In smoothing

continuous curves, the layers of
control points for each level of
smoothing move farther and
farther “into” the array from the
endpoints, and for high levels of
smoothness, there may not be a
sufficient number of control
points to accommodate the changes
dictated by the adjacent curves
on either end of the spline being
modified. Elevating the degree
of a cubic Bézier spline to a
quartic or quintic gives a spline
of the same shape but with more
control points, so the influences
from adjacent segments on either
end of the curve don’t overlap.

Bézier Triangles

There are other ways in which
Bézier splines can be combined to
form surfaces. On 14 Aug 2018,

user JimT created, “A Bezier
triangular patch, based on
(utv+w) "3 = 1, where u, v and w
(w=1-u-v) are triangular co-
ordinates. Using a singular

quadrilateral patch could cause
problems / wrinkles. However,
trying to smoothly join Bezier
triangular patches 1is even more
of a mug's game than trying to
smoothly join Bezier
quadrilateral patches since there
is only one internal point.”



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Illustration 22: JimT's Bézier triangular patch

Not realizing it at the time,

the author now notes that if
degree elevated splines were
used, there would be sufficient
control points to do so. There
are indeed known methods to do
So7,8

Rational Bézier splines

Bézier bicubic patch syntax and
implementation in POV-Ray
Nearly all of the source code

for implementing Bézier patches
in POV-Ray was written by
Alexander Enzmann. The syntax
for rendering a single Bézier

bicubic surface is:

bicubic patch {
type 1
flatness 0.01
u steps 4
v_steps 4
uv_vectors
<0,0>,<1,0>,<1,1>,<0,1>
CPl, CP2, CP3, CP4,
cp5, CpP6, CP7, CP8,

17

Cp9, CP10,
CP13, CP14,
uv_mapping
texture {myTexture}

interior texture {T interior}

CPl1,
CP15,

CP12,
CP16

The type keyword is required,
and may be 0 or 1. It describes
how POV-Ray stores the patch data
in memory. If it is 0, then only
the corner points are stored in
memory, and all of the parts of
the patch are calculated at
render time. If it is 1, then
the patch is preprocessed into
subpatches that are stored in
memory, thus reducing the render
time. (Author’s note: values of
-1 and 2 have both been tested
and produce no parse errors. -1
appears to yield results
equivalent to 0, and 2 appears to
be equivalent to 1)

The u_ steps, v_steps and
uv_vectors keywords are optional,
and are only necessary if uv-
mapped textures or a flatness < 1
are employed. It is worth noting
here that the uv-vectors 1listed
above the array of control points
are applied starting at CPl, and
then if the control points are
arranged in a 4x4 matrix as they

are in the example given, they
then proceed in a clockwise
fashion as the control points
actually appear in the code.
That is: CP1l, CP4, CP1l6, CP13.
The flatness keyword is

optional, and defaults to 0 if
not supplied. Nonzero values are
used to determine to what degree



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

the adaptive subdivision of the
patch is suppressed. A flatness
of 1 causes POV-Ray to restrict
the patch to being completely
flat. Intermediate values need
to be tested to ensure that
adjacent areas of the patch are
adequately subdivided such that
there are no “cracking” artefacts
in the surface.

Hllustration 23: A severely cracked bicubic patch.
u_steps 3, v_steps 3, flatness 0.7

If the value for flatness is 0
POV-Ray will always subdivide the
patch to the extent specified by
u_steps and v_steps. POV-Ray
divides the patch into a maximum
of 2usters x 2vsters. If u steps and
v_steps are not specified, they
default to 0, and the patch is
rendered as a flat square made of
two triangles.

18

Illustration 24: How POV-Ray subdivides patches
into triangles based on step values

Curious as to whether it were

possible to assign fractional
values, a series of numbers that
are base2 logs of integers was
calculated. These were tested in
order to try to increase the
number of divisions per side
incrementally, rather than simply
assigning integer values to

u steps and v_steps that result
in large Jjumps in the amount of
surface subdivision.



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

N per side N log 2 Subpatches Triangles

1 0.0000 1

2 1.0000 4

3 1.5850 9 1
4 2.0000 16 3
5 2.3219 25 5
6 2.5850 36 7
7 2.8074] 49 9
8 3.0000 64 12
9 3.1699 81 16
10 3.3219 100 20
11 3.4594 121 24
12 3.5850 144 28
13 3.7004 169 33
14 3.8074 196 39
15 3.9069 225 45
16 4.0000 256 51

Table 1: Divisions per side, value (N log 2) to use
for n_step, and stats

This does not work in the
current version, as apparently
the floor value of the exponent
is used to calculate the number
of subdivisions.

7

_ i

Illustration 25: A bicubic_patch patch specially
curved and using digital isophotes to highlight
actual triangles and levels of subdivision by POV-
Ray. u_steps =2 v_steps =2

19

Uses for Bézier and
bicubic patches

Bézier splines are frequently
used to encode the 2-dimensional
shape of typefaces and drawings,
because rather than concretely
defining the absolute position of
points, as in a digital image,
they describe how the shape is
constructed between certain key
points. This allows them to be
smoothly rendered at any
resolution sufficient to display
the shape. Enlarging or scaling a
digital image results in a
coarse, blocky appearance due to
its static nature, whereas
rendering a typeface or SVG
drawing on a large, high-
resolution screen or printout
maintains the smooth appearance
of the whole shape since the
regions between the control
points are interpolated at the
given resolution of the device.

Since Bézier surfaces are
simply defined and easily
manipulated, flexible objects
such as flags, ribbons, cloth,
and skin are often modeled using
bicubic patch objects.

splines

Bézier splines are also
extensively used in animation,
for controlling the position of
objects, the speed of their
movements, and the paths of the
camera around a scene. This can
give a much smoother and

physically realistic effect than
other methods which can appear
jerky and unnatural.



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Instead of 3-dimensional
spatial vectors, if the control
points are rgb or other values in
a given color space, splines and
surfaces can be used to control
color blending.

Illustration 26: A 4-color Bézier patch with
bilinearly interpolated surface coloring. Ribbons
and backgrounds such as this are typically seen
in presentation slides.

Unlike
mathematical function
yields a wunique value for any
given values of x, y, and z, a
parametric function can double-
back on itself and even self-
intersect. This makes using
Bézier splines and surfaces
useful for modeling such things
as knots, crumpled paper, rocks
and complex geologic formations,
etc.

a usual implicit

which

Implicitization, Parametrization
and Intersection

For any parametric curve, an
implicit polynomial equation

exists that describes exactly the

20

same curve. Likewise, for any
parametric surface, there exists
an implicit equation that
describes exactly the same
surface. The process of finding
the implicit equation of a
parametric curve or surface is
called implicitization.

An inversion formula for a
parametric curve can be derived
using polynomials. If the

parametrization of a curve is a
generally one-to-one map between

parameter values and points on
the curve, the inversion formula
returns the parameter value t
corresponding to a point (x, V)
that lies on the curve.

Algebraic methods also can
facilitate the design of
algorithms for computing

intersections between curves and
surfaces.

CONCLUSION

Bézier splines, surfaces, the
de Casteljau algorithm, and
related approximation techniques
are readily and comparatively
easily implemented in code and

graphics software such as POV-Ray
to model complex and interesting
organic and fluid forms that are
difficult to create and control
by other methods. By using tools

for analyzing continuity and
curvature, surfaces and animation
transitions can be designed to
give high-quality, pleasing
results that can be otherwise
hard to achieve. By Dbetter
understanding the fundamental
ideas of basis functions,



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

compound splines, and Bernstein
polynomials that are commonly
used to create curves and

surfaces, it is hoped that users
can now begin to experiment with
these basics and expand on the
underlying techniques to create
new and interesting forms and
effects in 3-dimensional computer
graphics.

ACKNOWLEDGEMENTS

I would like to thank Tor Olav
Kristensen for  his invaluable
guidance and patient instruction
regarding stitching multiple
Bézier patches and navigating the
surface via coordinates generated
with functions and macros that
calculate the results of
Bernstein polynomials. His
beautiful renders and meticulous
work serves as a source of
continual inspiration.
http://dataduppedings.no/subcube/
https://github.com/t-o-k

Without question, Christoph
Lipka always took the time and
effort to look through code,

stand his ground when making me
see the error of my ways, and
went above and beyond the call of
an open-source developer to debug
secenes and isolate and identify
the source of user error.

M. Jérome Grimbert richly
deserves much appreciation and
respect for his helpful and
insightful comments, timely
corrections, snippets of code,
and impeccable examples of
tackling thorny problems in his

extensive Hgpovray38 fork.

21

http://wiki.povray.org/content/Us
er:Le Forgeron
https://github.com/LeForgeron

Richard Callwood III’'s sphere
sweep approximation greatly
facilitated the work of preparing
the many figures in this paper,
and his overnight provision of
supplementary code for properly
rendering quadratic Bézier curves
was a welcome surprise.

William F. Pokorny has
provided his expertise and
tuteledge in crafting functions,
and directing me through some of
the trickier syntax subtleties.
http://wiki.povray.org/content/Us
er :Wfpokorny
https://github.com/wfpokorny/povr
ay

Special thanks to Jeffrey Rohl
for much encouragement, continued
interest, constructive criticism,
intellectual stimulation, and
proofreading the draft.

I would like to thank the many
other members of the POV-Ray
community for their friendship,
support, interest, constructive
criticism, and tireless efforts
in keeping the project alive over
the past 25+ years.

NOTES ABOUT THE ILLUSTRATIONS

To the greatest degree
possible, all figures were
rendered by the author using as
much Bézier code as possible.
For the cover page -

Top image: 3 Sep 2018, uv-
mapped torus made entirely of
smoothly stitched Bézier bicubic
patches.


http://dataduppedings.no/subcube/
https://github.com/wfpokorny/povray
https://github.com/wfpokorny/povray
http://wiki.povray.org/content/User:Wfpokorny
http://wiki.povray.org/content/User:Wfpokorny
http://wiki.povray.org/content/User:Le_Forgeron
http://wiki.povray.org/content/User:Le_Forgeron
https://github.com/LeForgeron
https://github.com/t-o-k

Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Center 1image: 8 Sep 2020,
equation for Bernstein polynomial
originally as an SVG file,
converted to cylinders and
quadratic Bézier sphere sweeps.
Rendered as a difference {}

Bottom image: 30 Aug 2020, a
simple wuv-mapped Bézier bicubic
patch with control grid

FURTHER READING

Spline types
natural cubic spline
B-splines
Cardinal splines
Catmull-Clark

subdivision surface

Catmull-Rom splines
cubic Hermite splines
Hermite splines
I-splines
Kochanek-Bartels splines
Linear splines
M-splines
NURBS
T-splines

Font and typeface design

Automotive design

Coons patches

NURBS

REFERENCES AND SOURCE MATERIAL

SYMBOLS and GLOSSARY of TERMS

n! Commonly called “n factorial”,
the product of all ©positive
integers less than or equal to n.

“n choose k” there are n-choose-k
ways to choose an unordered set
of k elements from a fixed set of

22

n elements. This can be
calculated n!/k!(n-k)! and yields
the coeeficients of the x*¥ terms

in the Dbinomial expansion of
(1+x)".
>, “Sigma” denotes the sum of the

following terms.

A “Wedge” operator. Can denote
the cross product of two vectors,
or the “exterior product”

Binormal vector — a vector
perpendicular to the tangent and
normal vectors (their Ccross
product)

Frenet-Serret Frame for a non-
degenerate curve parameterized by

its arc 1length f(s), the frame
defined by the orthogonal
tangent, normal, and Dbinormal
vectors

Isoline — A 1line connecting
points of equal value, such as
elevation, Dbrightness, relative
position (u, v), etc.

Isoparm Lines of constant u or
v values that run along a NURBS
surface

Isophote — a 1line of constant
angle
L'Hb6pital’s Rule — 1lim (x-=c)

f(x)/g(x) lim (x-c) f£'(x)/g’'(x)

Product Rule — £

+ £ x g’

(f x g)" = X g



Persistence of Vision Ray-tracer — “Elements of Ray-tracing” Monograph Series

Osculating circle — the tangent
circle whose center lies on the
inner normal of a curve and whose
curvature matches the curvature
at that point

NURBS — Non-Uninform Rational B-
Spline
Normal vector — a vector that is

perpendicular to a curve oOr
surface at that point.

Osculating plane — a plane that
meets a curve or surface with a
second order of contact

Tangent vector — a vector that is
tangent (intersects at only that
point) to a curve or surface.

Draft notes:

Need to map curvature of a 2D
surface

May include an appendix with
code, macros, formulas, etc. or
provide a link to pbsf.

bezier for circles and spheres
Additional illustrations:

Coons patch for comparison
standard texture vs uv_mapping
bicubic color blending

23



Bernstein, S. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités, Comm. Kharkov Math.
Soc. 13 (1912), 1-2

Casteljau, Paul de Faget. (1963). Courbes et Surfaces a Pdles (p. 45, Technical Report). Paris: Citréen.

P. Bézier. Définition numérique des courbes et surfaces I. Automatisme, XI:625-632, 1966.

Runge, Carl (1901), "Uber empirische Funktionen und die Interpolation zwischen dquidistanten Ordinaten", Zeitschrift
fiir Mathematik und Physik, 46: 224-243.

(Matt Timmermans) https://math.stackexchange.com/questions/1006207/why-do-we-choose-cubic-polynomials-when-
we-make-a-spline
https://nbviewer.jupyter.org/github/mtimmerm/IPythonNotebooks/blob/master/Natural CubicSplines.ipynb

Farin, Gerald E. Curves and surfaces for computer aided geometric design : a practical guide. Morgan Kaufmann
Publishers Inc., 2001.

Xiaoxiao Du, Gang Zhao, Wei Wang, Computer-Aided Design & Applications, 17(2), 2020, 362-383



